Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn

ROZPRAWA DOKTORSKA

mgr inż. Mateusz Broniś

WPŁYW WYBRANYCH WARUNKÓW OBRÓBKI NA DOKŁADNOŚĆ WYMIAROWO KSZTAŁTOWĄ I CHROPOWATOŚĆ POWIERZCHNI OBROBIONYCH OTWORÓW

Promotor: dr hab. inż. Edward Miko, prof. PŚk Promotor pomocniczy: dr inż. Łukasz Nowakowski

Kielce 2023

Spis treści

WYKAZ WAŻNIEJSZYCH OZNACZEŃ I SKRÓTÓW5
WSTĘP
1. ANALIZA LITERATUROWA TEMATU9
1.1. Wpływ warunków obróbki na dokładność wykonanych otworów12
1.2. Wpływ warunków obróbki na odchyłki kształtu i położenia wykonanych otworów14
1.3. Wpływ warunków obróbki na chropowatość powierzchni wykonanych otworów
1.4. Wpływ warunków obróbki na zadziory wokół otworów 26
2. BADANIA SYMULACYJNE WPŁYWU WYBRANYCH WARUNKÓW OBRÓBKI NA DOKŁADNOŚĆ WYMIAROWO KSZTAŁTOWĄ I CHROPOWATOŚĆ POWIERZCHNI OTWORÓW
2.1. Badania symulacyjne wpływu warunków obróbki na dokładność wykonanych otworów29
2.2. Badania symulacyjne wpływu warunków obróbki na odchyłki kształtu i położenia wykonanych otworów
2.3. Badania symulacyjne wpływu warunków obróbki na chropowatość powierzchni wykonanych otworów
2.4. Badania symulacyjne wpływu warunków obróbki na zadziory wokół wykonanych otworów
3. HIPOTEZY I ZAKRES PRACY
3.1. Hipotezy pracy
3.2. Zakres pracy
3.3. Elementy nowości w pracy
4. METODYKA BADAŃ EKSPERYMENTALNYCH PROCESU WIERCENIA 39
4.1. Charakterystyka procesu wiercenia w różnych układach kinematycznych
4.2. Charakterystyka narzędzia użytego do badań

WYKAZ WAŻNIEJSZYCH OZNACZEŃ I SKRÓTÓW

OZNACZENIA

b_f	– grubość korzenia zadzioru – burr root thickness, μm
b_{g}	– grubość zadzioru – burr thickness, µm
CE	– błąd walcowości – cylindricity error, μm
CYL_t	 – odchyłka walcowości – cylindricity deviation, μm
DE	– błąd średnicy – diameter error, μm
EBH	 – wysokość zadzioru na wyjściu – exit burr height, µm
F	– długość fali – wavelength, mm
f_n	– posuw na obrót – feed per revolution, mm/obr
HDA	– przybliżenie średnicy otworu – hole diameter approxamity, µm
HDE	– błąd średnicy otworu – hole diameter error, μm
h_0	– wysokość zadzioru – burr height, μm
n	 prędkość obrotowa wrzeciona – spindle speed, obr/min
r_{f}	– promień korzenia zadzioru – root radius, μm
Ra	- średnie arytmetyczne odchylenie profilu chropowatości - arithmetic
	mean height, µm
RE	– błąd okrągłości – roundness error, μm
RON_t	– odchyłka okrągłości – roundness deviation, μm
Rt	 – całkowita wysokość profilu chropowatości – total height, μm
Rz	– maksymalna wysokość profilu chropowatości – maximum height, μ m
Sa	– średnia arytmetyczna wysokość powierzchni – arithmetic mean
	surface height, µm
STR_t	– odchyłka prostoliniowości – straightness deviation, µm
Sq	– wysokość średniokwadratowa powierzchni – height of the area mean
	square, μm
UPR	 – fal na obrót – undulations per revolution
\mathcal{V}_{c}	 prędkość skrawania – cutting speed, m/min
\mathcal{V}_{f}	– prędkość posuwu – feed rate, mm/min

SKRÓTY

2D	– analiza struktury geometrycznej w dwóch wymiarach (profilu)
3D	- analiza struktury geometrycznej w trzech wymiarach (topografia)
CYL_p	- odchyłka walcowości wzniesienie-odniesienie - peak to reference
	cylindricity deviation
CYL_v	- odchyłka walcowości odniesienie-wgłębienie - reference to valley
	cylindricity deviation
DF	 stopnie swobody – degrees of freedom
DOE	 plan eksperymentu – design of experiment
F	– test Fishera
KIN	 – układ kinematyczny – kinematic system
LSCI	– okrąg odniesienia najmniejszych kwadratów – least squares reference
	circle
LSCY	$- walec \ odniesienia \ najmniejszych \ kwadratów - least \ squares \ reference$
	cylinder
LSD	 – odchyłka prostoliniowości lokalna – local straightness deviation
MCCI	- okrąg odniesienia opisany najmniejszy - minimum circumscribed
	reference circle
МССҮ	- walec odniesienia opisany najmniejszy - minimum circumscribed
	cylinder
MICI	- okrąg odniesienia wpisany największy - maximum inscribed
	reference circle
MICY	– walec odniesienia opisany największy – maximum inscribed cylinder
MS	– średni kwadrat odchyleń – mean square
MZLI	 proste odniesienia najmniejszej strefy – minimum zone lines
SS	– suma kwadratów odchyleń – sum of squares
р	 – istotność – statistical significance

WSTĘP

Obróbka skrawaniem zajmuje i będzie zajmować czołową pozycję pod względem wykonywanych operacji czy też ponoszonych kosztów podczas kształtowania wyrobów. Obecnie jesteśmy świadkami ciągłego postępu w rozwoju obrabiarek, narzędzi oraz oprzyrządowania wykorzystywanego w produkcji i budowie maszyn. Dlatego rozwój klasycznej metody kształtowania części maszyn (produktów), ciągle wymaga prowadzenia prac naukowo-badawczych w celu poprawy dokładności wymiarowo-kształtowej i chropowatości powierzchni wykonywanych elementów [1].

Przed inżynierem projektującym proces technologiczny stawiane są wymagania dotyczące zapewnienia jakości chropowatości powierzchni, dokładności, redukcji odchyłki kształtu i położenia operacji wykonanych na przedmiocie obrabianym. Inżynier bazujący na swojej wiedzy oraz doświadczeniu musi sprostać tym wymaganiom. W tym celu optymalizuje wartości parametrów skrawania, dobiera odpowiednie narzędzia wraz z układem kinematycznym zapewniającym najlepszą sztywność układu obróbkowego.

W procesie produkcyjnym jedną z podstawowych operacji jest wykonywanie otworów. Proces obróbki skrawaniem zachodzi dzięki złożeniu dwóch ruchów: głównego (ruch obrotowy) i pomocniczego (ruch prostoliniowy) [2]. Najbardziej powszechnymi otworami wykonywanymi w częściach maszyn i nie tylko są otwory o długości nie przekraczającej długości pięciu średnic wiertła (5D) i średnicy nie większej niż 100 mm. W rzeczywistości coraz częściej wykonywane są otwory przekraczające długość 5D np. w lufach, korbowodach, wałach korbowych, prowadnikach zaworowych, wrzecionach. Wykonanie otworu zależne jest od wielu zdefiniowanych parametrów takich jak: średnica, długość, przelotowość, falistość, walcowość, prostoliniowość oraz chropowatość powierzchni otworu [3]. Niestety obróbce skrawaniem towarzyszy bardzo dużo złożonych zjawisk, które oddziaływają na proces skrawania.

Otwory klasyfikuje się na podstawie stosunku długości otworu do jego średnicy l/d. Do głębokich otworów zaliczamy otwory dla których stosunek l/d wynosi od trzech [4, 5] do dziesięciu [6]. Jednakże badania wokół tej tematyki definiują tą granicę l/d = 5 [6, 7, 8, 9]. Podczas wiercenia głębokich otworów najczęściej stosuje się dwie metody. Metoda pierwsza jest najczęściej stosowana ze względu na jej niezawodność. Odbywa się ona za pomocą pełnego wiertła, w miejscu przyszłego otworu następuje przekształcenie materiału w wióry. Metoda druga (wiercenie trepanacyjne), zamiast usuwać cały materiał w postaci wiórów, narzędzie pozostawia lity rdzeń pośrodku otworu [10]. Zwiększenie niezawodności procesu wykonywania głębokich otworów jest bardzo istotne podczas wiercenia otworów o małej średnicy do około 6 mm. Wykonywanie takich otworów stosowane jest w przemyśle np. w obróbce otworów przewodów olejowych, w produkcji złączek, korpusów wtryskiwaczy, instalacji paliwowych, itp. [11].

Praktyka technologii maszyn pokazuje, że występuje zjawisko dziedziczenia technologicznego polegająca na kopiowaniu błędów kształtu powstałych w poprzednich operacjach. Operacja wykonywania otworów jest źródłem prawie wszystkich błędów położenia i kształtu. Dlatego tak ważny jest rozwój oraz eliminacja błędów podczas operacji zgrubnych. Szczególnie ważne podczas obróbki przedmiotów osiowosymetrycznych (cienkościenne tuleje, gilzy itp.) jest zachowanie prostoliniowości osi otworu, prostopadłości jej do powierzchni czołowej, współosiowości do innych powierzchni oraz równoległości osi wszystkich otworów [3, 11].

W niniejszej rozprawie postanowiono wykonać badania eksperymentalne procesu wiercenia głębokich otworów wykorzystując różne układy kinematyki procesu wiercenia. Dodatkowo w pracy badawczej opracowano dla różnych materiałów teoretyczno-doświadczalne modele do prognozowania chropowatości powierzchni, odchyłki walcowości, prostoliniowości, okrągłości, błędu średnicy, wysokości oraz szerokości zadzioru powstającego na wyjściu z otworu.

Sformułowaną hipotezę i cel pracy przedstawiono w rozdziale trzecim. W rozdziale czwartym przedstawiono charakterystykę: trzech układów kinematycznych procesu wiercenia, narzędzi, oprawki, maszyn, materiałów, mocowań, kształtu oraz sposobu kodowania próbek wykorzystanych w badaniach.

W rozdziale piątym przedstawiono opracowanie wyników badań. Rozdział ten podzielono na trzy podrozdziały. Pierwszy podrozdział zawiera analizę dokładności wymiarowo-kształtowej otworów (CYL_t, STR_t, RON_t oraz DE). Zawiera również analizę statystyczną ANOVA oraz symulację wybranych stworzonych modeli matematycznych prognozujących parametry wyjściowe. Kolejny podrozdział zawiera analizę chropowatości powierzchni wykonanych otworów względem trzech wybranych parametrów (Ra, Rz, Rt). W trzecim podrozdziale przedstawiono analizę zadziorów na wyjściu otworu opisanych dwoma parametrami: szerokością oraz jego wysokością. Każdy podrozdział zawiera analizę statystyczną, budowę oraz symulację modeli matematycznych. W czwartym podrozdziale zaprezentowano szczegółową analizę odchyłki walcowości. W ostatnim podrozdziale wykonano analizę przypadków odchyłek okrągłości za pomocą analizy Fouriera.

Ostatni rozdział jest podsumowaniem pracy. Zawarte w nim wnioski dotyczą wpływu układu kinematycznego na wskazane parametry wyjściowe.

1. ANALIZA LITERATUROWA TEMATU

W obróbce skrawaniem wierceniem nazywamy operację polegająca na utworzeniu otworu w materiale. Proces wiercenia można prowadzić na różnych obrabiarkach:

- wiertarkach do głębokiego wiercenia,
- wiertarko-frezarkach,
- obrabiarkach zespołowych,
- automatach tokarskich,
- tokarkach uniwersalnych,
- tokarkach rewolwerowych,
- frezarkach,
- wiertarkach uniwersalnych kadłubowych i promieniowych
- obrabiarkach sterowanych numerycznie (np. tokarkach i frezarkach itp.) [3].

Wykonywanie otworów jest również podzielone ze względu na stopień zaangażowania krawędzi skrawających [12]:

- wiercenie wykonywane w pełnym materiale, najczęściej stosowany sposób wykonywania otworów (rys. 1. a),
- powiercanie wiercenie wtórne, w celu powiększenia średnicy (rys. 1. b),
- rozwiercanie zgrubne zwiększa dokładność w stosunku do powiercania (rys. 1. c),
- rozwiercanie wykończeniowe wykonywany po rozwiercaniu zgrubnym i wierceniu (rys. 1. d).

Rys. 1. Obróbka otworów: a) wiercenie, b) powiercanie, c) rozwiercanie zgrubne, d) rozwiercanie wykończeniowe, gdzie: $k_r - k$ ąt przystawienia krawędzi skrawającej, $a_p - g$ łębokość skrawania, D_0 – średnica otworu wstępnego, D – całkowita średnica otworu, f_z – posuw na ostrze, b_D – część robocza [12]

Wykonywanie otworu można również podzielić ze względu na położenie osi wykonywanego otworu [13]:

- pionowe realizowane na większości odmian wiertarek, przy nieruchomym przedmiocie obrabianym narzędzie wykonuje ruch główny oraz posuwowy,
- poziome realizowane na wytaczarko-frezarkach, wiertarkach do głębokich otworów, tokarkach. Najczęściej narzędzie wykonuje ruch posuwowo-prostoliniowy, natomiast przedmiot obrabiany wykonuje ruch główny, obrotowy.

Inne kryterium podziałowe wykonywania otworów ze względu na kształt:

- otwór przelotowy,
- otwór nieprzelotowy.

Rozróżniamy cztery układy kinematyczne wiercenia otworów [2, 3, 13, 14]:

- przedmiot obrabiany jest nieruchomy, natomiast narzędzie wykonuje jednocześnie ruch główny (obrotowy) i posuwowo-prostoliniowy,
- przedmiot obrabiany wykonuje ruch główny (obrotowy), natomiast narzędzie wykonuje tylko ruch posuwowo-prostoliniowy, równoległy do osi obrotu przedmiotu obrabianego,
- przedmiot obrabiany wykonuje ruch obrotowy, natomiast narzędzie wykonuje ruch obrotowy w przeciwnym kierunku do ruchu przedmiotu oraz ruch posuwowo-prostoliniowy,
- przedmiot obrabiany wykonuje ruch prostoliniowy, równoległy do osi obrotu narzędzia, natomiast narzędzie wykonuje tylko ruch obrotowy.

Efektami technologicznymi w procesie wiercenia są: twardość powierzchni, dokładność wymiarowo-kształtowa (średnica, równoległość, cylindryczność, prostopadłość, nachylenia, współosiowość, symetryczność, przecięcia osi otworu), chropowatość i falistość powierzchni otworu oraz wydajność procesu [14]. Osiągnięcie wskazanych wskaźników dokładności otworu, nie stanowi problemu w kolejnych etapach produkcji z wykorzystaniem narzędzi: półwykończeniowych, wykończeniowych oraz docieraków otworów itp. Jednakże tymi oto narzędziami dodając kolejne etapy procesu technologicznego podnosimy koszty wytworzenia otworu o danej jakości. Jednakże pomimo dodania kolejnych operacji nie zawsze uzyska się odpowiednie zwiększenie jakości otworów. Naukowcy w swoich pracach przedstawiają, że błąd osi wykonanego otworu może zostać skorygowany maksymalnie o 15% [15, 16, 17]. Jak widać w procesie wiercenia bardzo duża rolę odgrywa tzw. dziedziczenie technologiczne polegające na kopiowaniu błędów z poprzedzającej operacji [11]. Ogólny podział problemów związanych z jakością otworu przedstawił Aamir wraz ze współautorami. Jakość wykonanego otworu definiuje: chropowatość powierzchni, odchyłka walcowości, prostoliniowości, okragłości, wymiar otworu oraz zadziory, które powstały na wejściu i wyjściu otworu [18]. Na podstawie własnych doświadczeń, książek oraz publikacji naukowych przedstawiono własną charakterystykę jakości otworu jako rys. 2.

Rys. 2. Charakterystyka jakości otworu

Otwory cylindryczne są wykonywane w bardzo wielu częściach maszyn i przedmiotów np. w lufach, korbowodach, wałach korbowych, prowadnikach zaworowych, wrzecionach, przewodach olejowych, złączkach, korpusach wtryskiwaczy, instalacji paliwowych, gilzach, cienkościennych tulejach, kadłubach, tłokach, łożyskach ślizgowych itp. [3, 11]. Statystycznie przyjmuje się, że udział wiercenia w stosunku do innych operacji technologicznych takich jak: toczenie, frezowanie, szlifowanie występuje w co trzeciej operacji pod względem ich wykonywań (rys. 3).

1.1. Wpływ warunków obróbki na dokładność wykonanych otworów

W czasopismach naukowych międzynarodowi badacze starają się opracowywać coraz to dokładniejsze modele prognozowania błędów średnicy wierconych otworów. Po obszernej analizie z tej problematyki stwierdzono, że tylko nieliczni na podstawie swoich badań opracowali modele matematyczne. Aized i Amjad [20] zbudowali model w postaci równania logarytmu dziesiętnego uwzględniającego: prędkość obrotową wrzeciona, prędkość posuwu i metody wiercenia (w kilku przejściach).

$$log_{10}(DE) = 2,089 - 0,0015 \cdot s - 0,21 \cdot f + 0,32 \cdot Q + + 0,008 \cdot s \cdot f - 0,0015s \cdot Q - 0,007 \cdot f \cdot Q + 0,0011 \cdot s^{2} + + 0,007 \cdot f^{2} - 0,0112 \cdot Q^{2}$$
(1)

gdzie: s – prędkość obrotowa wrzeciona, f – prędkość posuwu, Q – głębokość przejść, s·f – interakcja prędkości obrotowej wrzeciona z prędkością posuwu, s·Q – interakcja prędkości obrotowej wrzeciona z głębokością przejść, f·Q – interakcja prędkości posuwu z głębokością przejść.

Polscy badacze [21] przedstawili tylko średnice otworów w funkcji prędkości posuwu dla trzech różnych prędkości skrawania.

Dla $v_c = 28 \text{ m/min}$

$$y = -0,00009 \cdot x + 6,194 \tag{2}$$

Dla $v_c = 24$ m/min

$$y = -0,0002 \cdot x + 6,184 \tag{3}$$

Dla $v_c = 7 \text{ m/min}$

$$y = -0,0001 \cdot x + 6,156 \tag{4}$$

gdzie: x – prędkość posuwu.

Vipin i współautorzy [22] zaproponowali model do prognozowania błędów średnicy otworu (HDE) uwzględniając następujące parametry wejściowe: narzędzie, prędkość obrotową wrzeciona, posuw na obrót, średnice wiertła, oraz materiał przedmiotu obrabianego. Model ten w stosunku do wyników doświadczalnych wykazał się dokładnością wynoszącą 91%.

$$HDE = 0,2765 - 0,0119 \cdot A + 0,0004 \cdot B - 3,7567 \cdot C + +0,0083 \cdot D - 0,0476 \cdot E - 0,0000 \cdot B^{2} + 15,8667 \cdot C^{2} + -0,0005 \cdot D^{2} + 0,0124 \cdot E^{2}$$
(5)

gdzie: A – narzędzie, B – prędkość obrotowa wrzeciona, C – posuw na obrót, D – średnica wiertła, E – materiał przedmiotu obrabianego.

Ciekawym modelem do prognozowania średnicy otworu jest model badaczy [23], który zawierał trzy parametry wejściowe takie jak: prędkość posuwu, prędkość obrotową wrzeciona oraz ciśnienie cieczy chodząco-smarującej. Wykazali oni wpływ prędkości obrotowej wrzeciona jako jeden z najbardziej oddziaływujący czynnik na średnicę otworu (około 50,5%).

$$DE = 44,9 - 0,383 \cdot f + 0,00615 \cdot N - 3,84 \cdot P + +0,0119 \cdot f^2 - 0,000000 \cdot N^2 + 0,285 \cdot P^2 + -0,000179 \cdot f \cdot N + 0,000181 \cdot N \cdot P - 0,0567 \cdot P \cdot f$$
(6)

gdzie: f – prędkość posuwu, n – prędkość obrotowa wrzeciona, P – ciśnienie, f·N – interakcja prędkości posuwu z prędkością obrotową wrzeciona, N·P – interakcja prędkości obrotowej wrzeciona z ciśnieniem, P·f – interakcja ciśnienia z prędkością posuwu.

Tureccy badacze pod przewodnictwem Kurt [24] zaproponowali model prognozowania dokładności wykonania średnicy otworu dla czterech parametrów wejściowych tj.: głębokość wiercenia, rodzaj powłoki wiertła, prędkość skrawania i posuw na obrót. Model został oceniony pod względem dokładności przewidywanych wyników na 88%.

$$HDA = 33,0 - 9,66 \cdot (glębokość wiercenia) + 17,8 \cdot f + +5,07 \cdot v_c - 0,04 \cdot (rodzaj powłoki wiertła)$$
(7)

gdzie: rodzaj powłoki wiertła (1 – HSS, 2 – HSS+TiAlN, 3 – HSS+TiN).

Badacze z Indii [25] przedstawili tylko wpływ prędkości obrotowej wrzeciona na dokładność wykonania otworu w procentach. Natomiast Singh, Kumar i Saini [26] przedstawili wpływ: prędkości obrotowej wrzeciona, posuwu na obrót i kąta wierzchołka narzedzia na bład średnicy otworu. Niestety praca ta nie zawiera żadnego modelu dotyczącego tych badań. Autorzy z Włoch [27] zawęzili swoje badania do zmierzenia średnicy wykonanych otworów dla stałego posuwu i dwóch parametrach predkości obrotowej wrzeciona (n = 3000; 4500 obr/min). Nie starając się wykonać modelu dla średnicy otworu. Inni badacze [28] dla dwóch parametrów wejściowych: prędkość obrotowa wrzeciona (n = 600; 1800; 3000 obr/min) i posuw na obrót ($f_n = 0.04; 0.12; 0.2$) zmierzyli dokładność średnicy dla każdej z kombinacji powyższych parametrów dla dwóch wierteł. Badacze [29] badali tylko jak parametry technologiczne ($v_c = 22,5$; 30; 37,5 m/min oraz $f_n = 0,015$; 0,025; 0,035 mm/obr) wpływają na dokładność wykonania otworu. Ucak i Cicek [30] zmierzyli średnice otworów dla dwóch wierteł (zwykłego i pokrytego TiAlN) przy różnych rodzajach chłodzenia (brak, LN2, wodne). Jak widać nie szukali oni optymalnego doboru parametrów procesu. Badacze [31, 32] dokonali pomiaru średnicy na wejściu i wyjściu otworu dla czterech parametrów: prędkości obrotowej wrzeciona (n = 1000; 3000; 6000; 9000 obr/min) i prędkości posuwu $(v_f = 100; 300; 600;$ 900 mm/min). Takie samo podejście zastosowali Kurt z współautorami. Z badań wynika, że wieksza predkość obrotowa wrzeciona zwieksza średnice otworu na wejściu i wyjściu. Innym podejściem wykazali się autorzy prac [33, 34] przedstawiając podejście sprawdzenia wpływu powłoki narzędzia na średnicę otworu w funkcji ilości wierconych otworów. Dedeakayogullari wraz ze współautorami [35, 36] sprawdzali jaki jest wpływ wiertła (bez powłoki oraz z powłoką), posuwu na obrót ($f_n = 0,06; 0,09; 0,12; 0,15$) oraz prędkości skrawania $(v_c = 25; 50; 75; 100 \text{ m/min})$ na błąd średnicy otworu. Zeng wraz ze współautorami [37] wykonali badania dokładności wykonania otworu tylko względem parametrów technologicznych (n = 16000; 18000; 20000 obr/min, $f_n = 0,25$; 0,5; 1; 1,5 mm/obr). Autorzy Yagishita oraz Fujio [38] badali dokładność wykonania otworu względem zastosowanego chłodzenia (bez chłodzenia, z chłodzeniem), stałej wartości posuwu na obrót wynoszącego 0,05 mm/obr oraz dwunastu różnych wartości prędkości obrotowej wrzeciona (n od 500 do 2500 ze zmianą o 100 obr/min). Badacze [39] sprawdzali jak zmienia się średnica otworu względem zastosowanego wiertła (wiertło kręte, wiertło z węglika spiekanego z powłoką oraz bez powłoki), prędkości skrawania ($v_c = 100$; 150 m/min), posuwu na obrót ($f_n = 0.5$; 1; 2 mm/obr) oraz zastosowanego chłodzenia (bez i z chłodzeniem wodnym).

1.2. Wpływ warunków obróbki na odchyłki kształtu i położenia wykonanych otworów

Odchyłka kształtu elementów cylindrycznych to największa odległość pomiędzy zarysem przylegającym a rzeczywistym. Natomiast zarys przylegający jest to element geometryczny najczęściej płaszczyzna, linia, okrąg itd. usytuowany względem zarysu rzeczywistego tak aby odległość między nim, a najdalszym punktem zarysu była jak najmniejsza [40]. Głównymi odchyłkami kształtu i położenia w otworach jest: odchyłka okrągłości, odchyłka prostoliniowości oraz odchyłka walcowości otworu. Odchyłka okrągłości jest najczęściej wyznaczana za pomocą dwóch metod: metody okręgu odniesienia wpisanego największego (MICI) i okręgu odniesienia opisanego najmniejszego (MCCI) lub okręgu odniesienia najmniejszych kwadratów (LSCI) [N2].

Metoda MICI/MCCI polega na pomiarze jak największej liczby punktów największego wewnętrznego oraz najmniejszego zewnętrznego obwodu otworu. Następnie wyliczenie odchyłki okrągłości następuje za pomocą poniższego równania.

$$Odchyłka \ okrągłości = R_{max} - R_{min} \tag{8}$$

gdzie: R_{max} – największy promień okręgu, który został wyznaczony poza okrągłym profilem otworu, R_{min} – największy promień okręgu, który może zostać wpisany do profilu otworu bez jego przecinania oraz jest on współśrodkowy z maksymalnym promieniem okręgu wpisanego.

Rys. 4. Największy promień okręgu wpisanego w otwór oraz najmniejszy promień okręgu opisanego na otworze [34]

Metoda LSCI, różni się od poprzedniej tylko zdefiniowaniem środka obrotu.

$$a = \frac{2}{N} \sum_{i=1}^{N} r_i \cos \gamma_i \tag{9}$$

$$b = \frac{2}{N} \sum_{i=1}^{N} r_i \sin \gamma_i \tag{10}$$

$$r' = \sqrt{(r_i \cos \gamma_i - a)^2 + (r_i \sin \gamma_i - b)^2}$$
(11)

Rys. 5. Przedstawienie graficzne zdefiniowania środka obrotu w metodzie LSCI [34]

Rys. 6. Ogólny błąd okrągłości w metodzie LSCI [41]

Na rys. 7 przedstawiono najbardziej charakterystyczne przypadki odchyłki okrągłości:

Rys. 7. Charakterystyczne przypadki odchyłki okrągłości [42]

Zgodnie z normą [N1] odchyłka walcowości jest to największa odległość punktów powierzchni rzeczywistej od powierzchni walca przylegającego w granicach obszaru cząstkowego [43]. Rozróżniamy cztery główne grupy zarysów walcowości względem odchyłki promieniowej [N3]:

- walec integralny nominalny,
- stożek (stożkowość),
- baryłka (baryłkowość),
- siodła (siodłowość).

Rys. 8. Grupy zarysów walcowości a) walec integralny, b) odchyłka stożkowości, c) siodłowość, d) baryłkowość [42]

Inna grupa zależna jest od zniekształcenia linii środkowej otworu przynależą tutaj: pojedyncze lub kilkakrotne wygięcie owej linii [42, N3].

Rys. 9. Zarys walcowości w stosunku do zniekształcenia środkowej linii a) pojedyncze b) podwójne [42]

Odchyłka walcowości wyznaczana jest najczęściej za pomocą metody walca odniesienia najmniejszych kwadratów (LSCY) lub metody walca odniesienia opisanego najmniejszego (MCCY) i walca odniesienia wpisanego największego (MICY). Metoda LSCY jest to walec, dla którego suma kwadratów odchyłek walcowości lokalnych jest najmniejsza. Polega ona na sumowaniu największej dodatniej i bezwzględnej wartości największej ujemnej lokalnej odchyłki walcowości mierzonych względem skojarzonego walca [42, N3].

$$CYL_t = CYL_p + CYL_p \tag{12}$$

gdzie: CYL_p – największa wartość odchyłki walcowości lokalnej dodatniej od walca odniesienia najmniejszych kwadratów, CYL_v – największa wartość bezwzględna odchyłki walcowości lokalnej ujemnej od walca odniesienia najmniejszych kwadratów.

Metoda MCCY i MICY polega na pomiarze najmniejszego możliwego walca, jaki może być dopasowany od zewnątrz powierzchni walcowości oraz pomiarze największego walca, jaki może być dopasowany od wewnątrz powierzchni walcowości [N3].

$$CYL_t = MCCY + MICY \tag{13}$$

Inną metodą pomiaru walcowości jest obserwacja linii środkowej otworu, polega ona na analizie równo oddalonych zarysów okrągłości otworu ustalonej na podstawie nominalnej średnicy otworu [42].

Rozróżniamy cztery strategie pomiarowe stosowane w ocenie odchyłki walcowości [42, 43, N3]:

- strategia punktowa pomiar wykonuje się w szeregu punktów w obszarze pomiarowym, przyjętym losowo na powierzchni lub rozmieszczonych według ściśle określonego schematu,
- strategia tworzącej polega na zebraniu pomiarów wzdłuż płaszczyznach otworu przechodzących przez jego oś; jest to zarówno metoda pomiaru i oceny prostoliniowości otworu,

- strategia profilu okrągłości, pomiar wykonuje się w szeregu równoległych płaszczyzn okrągłości, po przypisaniu płaszczyzny okrągłości do końca i początku obszaru pomiarowego,
- strategia siatki (klatki) polega na wykonaniu pomiaru w płaszczyznach przekroju osiowego wzdłuż tworzących w obszarze pomiarowym oraz w szeregu równoległych płaszczyzn okrągłości, po przypisaniu płaszczyzny okrągłości do końca i początku obszaru pomiarowego.

Rys. 10. Strategie pomiarowe przy ocenie otworu z punktu widzenia odchyłki walcowości [43]

Odchyłka prostoliniowości otworu najczęściej wyliczana jest jako suma największej wartości odchyłki prostoliniowości lokalnej dodatniej i największej wartości bezwzględnej odchyłki prostoliniowości lokalnej ujemnej. Natomiast odchyłka prostoliniowości lokalnej (LSD) jest to odchyłka punktu na profilu prostoliniowości od prostej odniesienia. Wyznaczana jest ona w kierunku prostopadłym do prostej odniesienia. W tym przypadku mamy prostą odniesienia najmniejszej strefy (MZLI).

Rys. 11. Odchylenie osi wywierconego otworu [44]

Cicek, Kivak i Ekici [45] opracowali model dla odchyłki okrągłości względem trzech parametrów: rodzaju narzędzia, prędkości skrawania i posuwu na obrót. Stwierdzili, że łączny wpływ prędkości skrawania i posuwu na obrót stanowi około 64% wpływu wszystkich czynników na odchyłkę okrągłości otworu.

$$Re = 7,279 - 1,36 \cdot Ct + 4,13 \cdot Vc + 2,69 \cdot f + +1,625 \cdot Vc \cdot f + 0,431 \cdot Ct^{2} + 2,881 \cdot Vc^{2}$$
(14)

gdzie: Ct – rodzaj wiertła, Vc – prędkość skrawania, f – posuw na obrót, Vc \cdot f – interakcja prędkości skrawania z posuwem na obrót.

Aized i Amjad [46] wykonali modele błędu okrągłości (RE) i błędu walcowości (CE) jako równania logarytmiczne uwzgledniające prędkość obrotową wrzeciona, prędkości posuwu i metody wiercenia (w kilku przejściach).

$$Ln(RE) = 0,46630 + 0,005 \cdot n + 0,48279 \cdot f + -0,48945 \cdot Q - 0,0007S \cdot n \cdot f - 0,00008 \cdot n \cdot Q + +0,22700 \cdot f \cdot Q + 0,000005 \cdot n^2 - 0,010936 \cdot f^2 + 0,009 \cdot Q^2$$
(15)

gdzie: n - prędkość obrotowa wrzeciona, f - prędkość posuwu, Q - głębokość przejść, n·f - interakcja prędkości obrotowej wrzeciona z prędkością posuwu, n·Q - interakcja prędkości obrotowej wrzeciona z głębokością przejść, f·Q - interakcja prędkości posuwu z głębokością przejść.

$$Ln(CE) = 10,76 - 0,0008 \cdot s - 0,71392 \cdot f + -0,50077 \cdot Q - 0,00008 \cdot s \cdot f - 0,0002 \cdot s \cdot Q + +0,026 \cdot f \cdot Q + 0,002 \cdot s^{2} + 0,018 \cdot f^{2} + 0,019 \cdot Q^{2}$$
(16)

gdzie: s – prędkość obrotowa wrzeciona, f – prędkość posuwu, Q – głębokość przejść, s \cdot f – interakcja prędkości obrotowej wrzeciona z prędkością posuwu, s \cdot Q – interakcja prędkości obrotowej wrzeciona z głębokością przejść, f \cdot Q – interakcja prędkości posuwu z głębokością przejść.

Ciekawym podejściem wykazali się badacze [23], którzy opracowali modele do prognozowania odchyłki okrągłości otworu. Zawierał on trzy parametry wejściowe takie jak: prędkość posuwu, prędkość obrotową wrzeciona oraz ciśnienie cieczy chłodząco-smarującej. Wykazali oni wpływ prędkości obrotowej wrzeciona jako jeden z najbardziej oddziaływujący czynnik na średnicę otworu (około 42%).

$$Odchyłka okrągłości = 71,4 - 1,05 \cdot f - 0,00640 \cdot S - 4,53 \cdot P + +0,164 \cdot f^2 - 0,000000 \cdot S^2 + 0,198 \cdot P^2 + +0,000055 \cdot f \cdot S + 0,000468S \cdot P - 0,221 \cdot P \cdot f$$
(17)

gdzie: f – prędkość posuwu, S – prędkość obrotowa wrzeciona, P – ciśnienie, f \cdot S – interakcja prędkości posuwu z prędkością obrotową wrzeciona, S \cdot P – interakcja

prędkości obrotowej wrzeciona z ciśnieniem, $P \cdot f$ – interakcja ciśnienia z prędkością posuwu.

Badacze [21] przedstawili tylko odchyłkę okrągłości otworów w funkcji prędkości posuwu dla trzech różnych prędkości skrawania.

Dla $v_c = 28 \text{ m/min}$

$$y = 0.0178 \cdot x + 1.133 \tag{18}$$

Dla $v_c = 24$ m/min

$$y = 0,0273 \cdot x + 2,284 \tag{19}$$

Dla $v_c = 7 \text{ m/min}$

$$y = 0,0498 \cdot x + 1,993 \tag{20}$$

gdzie: x – prędkość posuwu

Autorzy prac [31, 32] dokonali pomiaru odchyłki okrągłości na wejściu i wyjściu otworu dla czterech parametrów: prędkości obrotowej wrzeciona (n = 1000; 3000; 6000; 9000 obr/min) i prędkości posuwu ($v_f = 100$; 300; 600; 900 mm/min). Dwie grupy badaczy z Indii [47, 48] zoptymalizowali dobór: prędkości obrotowej wrzeciona, posuwu na obrót i średnicy wiertła dla odchyłki okrągłości i odchyłki cylindryczności otworu. Jednakże również nie przedstawili ogólnego modelu tych dwóch parametrów w stosunku do wartości wejściowych badanego procesu. Innym podejściem wykazali się badacze [33, 34] przedstawiając podejście sprawdzenia powłoki narzedzia na odchyłke okragłości i odchyłke prostoliniowości otworu w funkcji ilości wierconych otworów. Badacze Sandeep Ajay i Jagadesh [49] przedstawili w funkcji zmieniającej się prędkości obrotowej wrzeciona wpływ warunków chłodzenia na odchyłkę okrągłości otworu. Dheeraj i współautorzy [25] przedstawili tylko wpływ prędkości obrotowej wrzeciona na odchyłkę walcowości. Grupa badaczy z Singapuru [50] przedstawiła odchylenie prostoliniowości otworu dla dwunastu prób eksperymentalnych. Równocześnie dzielac je na cztery grupy zawierające dopuszczalne odchylenie prostoliniowości otworu. W pracy [44] autorzy zmierzyli tylko odchyłke prostoliniowości otworu. Badacze z Wielkiej pod przewodnictwem Abdelhafeez [51] zmierzyli odchyłkę Brytanii prostoliniowości oraz odchyłkę okrągłości otworu na wejściu i wyjściu dla zmiennych parametrów technologicznych: posuwu na obrót (f_n = 0,24; 0,08 mm/obr) oraz prędkości skrawania ($v_c = 150$; 50 m/min). Niestety nie przedstawili oni żadnego modelu odnoszącego się do przedstawionych badań. Khanna wraz ze współautorami [52] sprawdzili tylko jak wpływa rodzaj chłodzenia (brak i chłodzenie zalewowe) na jakość wywierconego otworu oceniając odchyłki walcowości i okragłości). Jednakże nie zmieniali oni żadnego z parametru wejściowego. Autorzy z Włoch [27] zawęzili swoje badania do zmierzenia jednego parametru jakości otworu (odchyłki okragłości) dla stałego posuwu i dwóch parametrach predkości obrotowej wrzeciona (n = 3000; 4500 obr/min). Badacze w pracy [28] dla dwóch parametrów wejściowych: prędkość obrotowa wrzeciona (n = 600; 1800; 3000 obr/min) i posuw na obrót $(f_n = 0.04; 0.12; 0.2 \text{ mm/obr})$ zmierzyli odchyłkę okrągłości otworu dla każdej z kombinacji powyższych parametrów. Użyli oni dwóch wierteł HSS oraz wiertła z węglika spiekanego. W pracy [53] badacze sprawdzili zmianę wartości odchyłki prostoliniowości w zależności od ciśnienia cieczy chłodzacej oraz prędkości obrotowej wrzeciona. Oezkaya wraz z współautorami [54] wykonywali wiercenie w warunkach wewnętrznego oraz zewnętrznego chłodzenia. Ocenianym parametrem była odchyłka prostoliniowości otworu. Badacze [55] badali jakość otworu (odchyłkę okragłości co 50 mm oraz prostoliniowości) w odniesieniu do czterech różnych parametrów prędkości obrotowej wrzeciona (n = 1500, 2000, 2500, 4500 obr/min). Muller i współautorzy [56] wykazali się bardzo ciekawym podejściem m.in. badali okragłość otworu względem wielkości (1; 1.4 mm), ilości (2; 4), kształtu (okrągły; trójkątny) oraz kąta (25; 15) kanałów chłodzących. Al.-Tameemi wraz ze współautorami [57] badali wpływ powłoki wiertła (TiN/TiAlN, TiAlN oraz TiN), predkości obrotowej wrzeciona (n = 1000, 2000, 3000 obr/min) oraz predkości posuwu (f = 50; 100; 150 mm/min) na odchyłkę walcowości oraz okrągłości otworu. Badacze [29] badali tylko jak parametry technologiczne ($v_c = 22.5$; 30; 37,5 m/min oraz $f_n = 0.015$; 0.025; 0.035 mm/obr) wpływają na odchyłkę okrągłości. Shah wraz ze współautorami [58] badali jak chłodzenie LN2 i LCO2, stałe parametry technologiczne (f = 100 mm/min i $v_c = 80 \text{ m/min}$) wpływają na odchyłkę walcowości oraz okrągłości otworu. Dedeakayogullari wraz ze współautorami [35, 36] sprawdzali jaki jest wpływ wiertła (bez powłoki oraz z powłoka), posuwu na obrót $(f_n = 0,06; 0,09; 0,12; 0,15)$ oraz prędkości skrawania ($v_c = 25; 50; 75; 100 \text{ m/min}$) na odchyłkę okrągłości oraz walcowości. Autorzy [59] wykonali obszerne badania względem dziewięciu różnych wartości posuwu na obrót ($f_n = 0,02; 0,04; 0,08; 0,1;$ 0,12; 0,15; 0,18; 0,25; 0,3 mm/obr), dziewięciu różnych prędkości obrotowych wrzeciona (n = 2000, 3000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000 obr/min) oraz rodzaju zastosowanej powłoki na wiertle (bez powłoki, powłoka diamentowa i DLC). Sprawdzili oni jak powyższe parametry wejściowe wpływają na odchyłkę walcowości oraz okrągłości otworu. Yagishita oraz Fujio [38] badali odchyłkę okrągłości otworu względem zastosowanego chłodzenia (bez chłodzenia, z chłodzeniem), stałej wartości posuwu na obrót wynoszącego 0,05 mm/obr oraz dwunastu różnych wartości prędkości obrotowej wrzeciona (n od 500 do 2500 ze zmiana o 100 obr/min). Senthil oraz Dhanasekaran [60] badali wpływ kąta wierzchołka wiertła (108, 118, 128) oraz parametrów technologicznych $(n = 1000; 2000; 3000, f_n = 0.05; 0.1; 0.15)$ na odchyłkę walcowości.

1.3. Wpływ warunków obróbki na chropowatość powierzchni wykonanych otworów

W literaturze oraz czasopismach naukowych występuje bardzo mało równań doświadczalnych opisujących chropowatość powierzchni wywierconych otworów. Poniższa grupa modeli do prognozowania parametru Ra chropowatości uwzględnia tylko wybrane parametry wejściowe obróbki. W pracy Balaji, Rao i Murthy [46] opracowali oni model do prognozowania chropowatości uwzględniając czynniki takie jak: kąt wierzchołkowy (A), prędkość posuwu (B) i prędkość obrotowa wrzeciona (C).

$$Ra = 3,03 + 0,18 \cdot A + 0,25 \cdot B + 0,22 \cdot C + 0,23 \cdot A \cdot B + 0,23 \cdot A \cdot C + 0,10 \cdot B \cdot C$$
(21)

gdzie: A – kąt wierzchołkowy, B – prędkość posuwu, C – prędkość obrotowa wrzeciona, A·B – interakcja kąta wierzchołkowego z prędkością posuwu, A·C – interakcja kąta wierzchołka z prędkością obrotową wrzeciona, B·C – interakcja prędkości posuwu z prędkością obrotową wrzeciona.

Podobne podejście zastosowali badacze Kumar i Singh [61] w swojej pracy badawczej opracowali model do prognozowania chropowatości uwzględniając prędkość obrotową wrzeciona, posuw na obrót i rodzaj wiertła.

$$Ra = 4,04 + 0,31 \cdot A + 0,28 \cdot B - 2,29 \cdot C + 0,19 \cdot A^{2} + 0,042 \cdot B^{2} - 0,71 \cdot C^{2} - 0,11 \cdot A \cdot B - 0,10 \cdot A \cdot C - 0,068 \cdot B \cdot C$$
(22)

gdzie: A – prędkość obrotowa wrzeciona, B – posuw na obrót, C – rodzaj wiertła, A·B – interakcja prędkości obrotowej wrzeciona z posuwem na obrót, A·C – interakcja prędkości obrotowej wrzeciona z rodzajem wiertła, B·C – interakcja posuwu na obrót z rodzajem wiertła.

Kilickap i współautorzy [62] bazując tylko na prędkości skrawania, posuwie na obrót oraz środowisku wiercenia (MQL, suche, sprzężone powietrze) przedstawili parametr Ra chropowatości następująco.

$$Ra = 4,115 - 0,82767 \cdot A + 8,225 \cdot B + 0,135 \cdot C + 0,0538 \cdot A^2$$
(23)

gdzie: A – prędkość skrawania, B – posuw na obrót, C – środowisko wiercenia.

Badacze z Pakistanu [20] zbudowali model chropowatości powierzchni (Ra) jako równanie logarytmiczne względem prędkości obrotowej wrzeciona, prędkości posuwu i metody wiercenia (w kilku przejściach).

$$Ln(Ra) = 1,167 + 0,009 \cdot s + 0,717 \cdot f - 0,38 \cdot Q + -0,0018 \cdot s \cdot f + 0,002 \cdot s \cdot Q + 0,0033 \cdot f \cdot Q + +0,00012 \cdot s^2 - 0,0043 \cdot f^2 + 0,021 \cdot Q^2$$
(24)

gdzie: s – prędkość obrotowa wrzeciona, f – prędkość posuwu, Q – głębokość przejść, s \cdot f – interakcja prędkości obrotowej wrzeciona z prędkością posuwu, s \cdot Q – interakcja prędkości obrotowej wrzeciona z głębokością przejść, f \cdot Q – interakcja prędkości posuwu z głębokością przejść.

W badaniach [63] pod przewodnictwem Ravindranath przedstawiono ogólny model chropowatości względem parametru Ra dla czterech parametrów: materiał obrabiany, prędkość obrotową wrzeciona, posuw na obrót i powłoka wiertła. Dokładność tego równania w stosunku do rezultatów wynosiła około 83%.

$$Ra = 9,49 - 0,00208 \cdot Speed + 5,45 \cdot Feed + -0,928 \cdot Comp - 0,482 \cdot Tool$$
(25)

gdzie: Speed – prędkość obrotowa wrzeciona, Feed – posuw na obrót, Comp – materiał obrabiany, Tool – powłoka wiertła.

Grupa trzech naukowców pod przewodnictwem Cicek [45] opracowała model względem trzech parametrów: rodzaju narzędzia, prędkości skrawania i posuwu na obrót. Stwierdzili, że łączny wpływ prędkości skrawania i posuwu na obrót wynosi aż 83,07% wpływu na chropowatość powierzchni Ra.

$$Ra = 2,2393 - 0,235 \cdot Ct + 0,258 \cdot Vc + 0,747 \cdot f + 0,145 \cdot Vc \cdot f + 0,036 \cdot Ct^2 + 0,001 \cdot Vc^2 + 0,56 \cdot f^2$$
(26)

gdzie: Ct – rodzaj wiertła, Vc – prędkość skrawania, f – posuw na obrót, Vc \cdot f – interakcja prędkości skrawania z posuwem na obrót.

W pracy [22] badacze z Indii zaproponowali model do prognozowania chropowatości (Ra) uwzględniając następujące parametry wejściowe: narzędzie, prędkość obrotową wrzeciona, posuw na obrót, średnice wiertła, oraz materiał przedmiotu obrabianego. Jest to jeden z szerszych poglądów na model chropowatości powierzchni uwzględniający aż pięć parametrów. Model ten w stosunku do wyników doświadczalnych zachowuje dokładność wynoszącą 98%.

$$Ra = 0,39842 - 0,07817 \cdot A + 0,00044 \cdot B + +8,22000 \cdot C - 0,13859 \cdot D + 0,13671 \cdot E + +0,00001 \cdot B^{2} + 0,00794 \cdot D^{2} + 0,09692 \cdot E^{2} + -0,00921 \cdot B \cdot C - 0,00009 \cdot B \cdot E + 0,19167 \cdot C \cdot D + -3,39000 \cdot C \cdot E$$
(27)

gdzie: A – narzędzie, B – prędkość obrotowa wrzeciona, C – posuw na obrót, D – średnica wiertła, E – materiał przedmiotu obrabianego, B·C – interakcja prędkości obrotowej wrzeciona z posuwem na obrót, B·E – interakcja prędkości obrotowej wrzeciona z materiałem przedmiotu obrabianego, C·D – interakcja posuwu na obrót z średnicą wiertła, C·E – interakcja posuwu na obrót z materiałem przedmiotu obrabianego.

Wiekszość badaczy ograniczyła sie tylko do krótkich wniosków. Aamir wraz współautorami [64] nie przedstawili żadnego modelu matematycznego na podstawie osiagnietych wyników. Być może dlatego, że za parametry wejściowe przyjeli tylko posuw na obrót i predkość obrotowa wrzeciona. Tak samo jak badacze z Włoch [65]. Jednakże przedstawili parametry wejściowe w stosunku do typowych parametrów 3D chropowatości powierzchni: wysokościowych Sa i Sq oraz amplitudowych i kształtu nierówności Ssk i Sku. Innym podejściem wykazał się Khanna wraz ze współautorami [52], którzy sprawdzili tylko jak wpływa rodzaj chłodzenia (brak i chłodzenie zalewowe) na jakość wywierconego otworu. Jednakże nie zmieniali oni żadnego z parametru wejściowego. Natomiast badacze z Niemiec [66] przedstawili tylko chropowatość powierzchni typując tylko parametr Rz dla, których parametrem wejściowym było tylko narzędzie. Wegert wraz ze współautorami [67] porównali jakość powierzchni (parametry Ra, Rz, Rt) w stosunku do głębokości wiercenia jednakże nie regulując parametrów wejściowych (przy stałej prędkości skrawania i posuwu). Autorzy z Indii [68] analizowali aż cztery parametry wejściowe: występowanie chłodzenia, prędkość posuwu, prędkość obrotową wrzeciona oraz głebokość wiercenia. Przeanalizowali oni za pomoca osiemnastej tablicy ortogonalnej wpływ każdego parametru wejściowego na chropowatość powierzchni a dokładniej parametr Ra. Niestety nie przedstawili żadnego modelu z powstałej pracy badawczej. Dwie grupy badaczy z Indii [47, 48] zoptymalizowali dobór: predkości obrotowej wrzeciona, posuwu na obrót i średnicy wiertła dla trzech parametrów chropowatości (Ra, Rt, Rz). Jednakże również nie przedstawili ogólnego modelu tych trzech parametrów w stosunku do wartości wejściowych badanego procesu. Oezkaya wraz z współautorami [54] wykonywali wiercenie w warunkach wewnetrznego oraz zewnetrznego chłodzenia. Ocenili oni otwór względem jednego parametru chropowatości powierzchni Rz. Autorzy [69] badali wpływ pięciu różnych geometrii wiertła podczas wiercenia na parametr Ra. Badacze [55] badali parametr Ra w odniesieniu do czterech różnych parametrów prędkości obrotowej wrzeciona (n = 1500, 2000, 2500, 4500 obr/min). Karabulut oraz Kaynak [70] badali wpływ posuwu na obrót ($f_n = 0.025$; 0.05; 0.075 mm/obr) oraz dwóch różnych prędkości skrawania ($v_c = 15$ i 30 m/min) na chropowatość powierzchni opisanej parametrem Ra. Autorzy [56] wykazali się bardzo ciekawym podejściem zbadali oni parametr Ra względem wielkości (1; 1,4 mm), ilości (2; 4 szt.), kształtu (okragły; trójkątny) oraz kąta (25; 15°) kanałów chłodzących. W badaniach [71] optymalizowano proces wiercenia względem zużycia narzędzia, prędkości obrotowej wrzeciona (n = 215, 315, 455 obr/min) oraz posuw na obrót ($f_n = 0.106$; 0,213; 0,316 mm/obr) względem uzyskania najmniejszej wartości parametru Ra. Shah i współautorzy [72] wykonali ocenę wiercenia Inconelu 718 z zastosowaniem kriogenicznych cieczy chłodząco smarujących (LN2, LCO2), stałym posuwie $f_n = 0.045$ mm/obr oraz trzech różnych parametrach predkości skrawania ($v_c = 10$; 15; 20 m/min). Dedeakayogullari wraz ze współautorami [35, 36] sprawdzali jaki jest wpływ wiertła (bez powłoki oraz z powłoką), posuwu na obrót ($f_n = 0.06$; 0.09; 0,12; 0,15) oraz prędkości skrawania ($v_c = 25$; 50; 75; 100 m/min) na parametr Ra.

Autorzy [59] wykonali obszerne badania względem dziewięciu różnych wartości posuwu na obrót ($f_n = 0,02; 0,04; 0,08; 0,1; 0,12; 0,15; 0,18; 0,25; 0,3 \text{ mm/obr}$), dziewięciu różnych prędkości obrotowych wrzeciona (n = 2000, 3000, 4000, 6000,8000, 10000, 12000, 14000, 16000, 18000 obr/min) oraz rodzaju zastosowanej powłoki na wiertle (bez powłoki, powłoka diamentowa oraz powłoka DLC). Sprawdzili jak powyższe parametry wejściowe wpływają na parametr Ra, Rt oraz Rz otworu. Ciekawym podejściem wykazali się badacze [73]. Zbadali oni wpływ wspomagania wibracjami podczas wiercenia otworu na parametr Rz. Senthil oraz Dhanasekaran [60] badali wpływ kata wierzchołka wiertła (108, 118, 128) oraz parametrów technologicznych (n = 1000; 2000; 3000, $f_n = 0.05$; 0,1; 0,15) na parametr Ra. Al.-Tameemi wraz ze współautorami [57] badali wpływ powłoki wiertła (TiN/TiAlN, TiAlN oraz TiN), prędkości obrotowej wrzeciona (n = 1000, 2000, 3000 obr/min) oraz predkości posuwu (f = 50; 100; 150 mm/min) na parametr Ra oraz Rz. Badacze [74] badali zmianę parametru Ra względem kąta wierzchołka wiertła (90, 118, 135) oraz parametrów technologicznych (n = 1000; 1500; 2000 obr/min, f = 100; 150; 200 mm/min). Hassan, Abdullah oraz Franz [75] badali jak zmienia się wartość parametru Ra otworu względem zastosowanego wiertła (kata nachylenia, prześwitu oraz wierzchołka wiertła). Autorzy [76] badali jak wzmocnienie materiału oraz parametry technologiczne procesu wiercenia ($v_c = 30$; 45; 60 m/min, $f_n = 0.05$; 0.1; 0.15) wpływają na parametr Ra otworu. Ni wraz ze współautorami [77] badali zmianę parametru Ra względem pięciu różnych parametrów technologicznych (n = 1000; 2000; 3000; 4000; 5000, f = 50; 100; 150; 200; 250 mm/min).

1.4. Wpływ warunków obróbki na zadziory wokół otworów

Podczas wiercenia otworów zawsze wokół nich powstają zadziory. Rozróżniamy cztery wskaźniki opisujące zadzior: wysokość zadzioru h_0 , grubość korzenia zadzioru b_f , grubość zadzioru b_g i promień korzenia zadzioru r_f , co zostało przedstawione na rys. 12.

Rys. 12. Wskaźniki zadzioru

Abdelhafeez i współautorzy [51] przedstawili opracowane modele wysokości zadziorów dla (AA7010 i Ti) w stosunku do dwóch parametrów wejściowych: prędkości skrawania i posuw na obrót.

$$Wysokość zadziora (AA7010) = 282,6 - 1,110 \cdot Vc - 2186 \cdot f + (28) +0,00111 \cdot f^2 + 4507 \cdot f^2 + 4,10 \cdot Vc \cdot f$$

$$Wysokość zadziora (Ti) = 53,0 + 8,24 \cdot Vc - 1203 \cdot f + -0,2254 \cdot Vc^2 + 3411 \cdot f^2 + 4,64 \cdot Vc \cdot f$$
(29)

gdzie: Vc – prędkość skrawania, f – posuw na obrót, $Vc \cdot f$ – interakcja prędkości skrawanej z posuwem na obrót.

Badacze z Indii [63] przedstawili ogólny model wysokości zadziorów dla czterech parametrów wejściowych: materiał obrabiany, prędkość obrotowa wrzeciona, posuw na obrót i powłoka wiertła.

$$Wysokosć zadziora = 1,14 - 0,000173 \cdot n + 0,450 \cdot f + -0,0467 \cdot mat - 0,108 \cdot p$$
(30)

gdzie: n - prędkość obrotowa wrzeciona, f - posuw na obrót, mat – materiał obrabiany, p – powłoka wiertła.

Badacze [21] przedstawili wysokość powstałych zadziorów w funkcji prędkości posuwu dla trzech różnych prędkości skrawania.

Dla $v_c = 28$ m/min

$$y = 1,9883 \cdot x - 66,115 \tag{31}$$

Dla $v_c = 24$ m/min

$$y = 1,7678 \cdot x - 67,354 \tag{32}$$

Dla $v_c = 7$ m/min

$$y = 1,2223 \cdot x - 53,045 \tag{33}$$

gdzie: x – prędkość posuwu

Bi i Liang [78] zmierzyli wysokość i grubość zadziorów na wejściu i wyjściu przy zmianie trzech parametrów: ciśnienia podawania cieczy chłodząco-smarującej, prędkości obrotowej wrzeciona i posuwu na obrót. Ucak i Cicek [30] zmierzyli wysokość zadziorów na wejściu i wyjściu dla otworów wywierconych za pomocą dwóch wierteł (zwykłego i pokrytego TiAlN). Stosując różne metody chłodzenia (brak, LN₂, wodne). Badacze Sandeep i współautorzy [49] przedstawili zmianę wysokości powstających zadziorów względem zmieniającej się prędkości obrotowej wrzeciona oraz wpływu warunków. Badacze z Indii [25] przedstawili tylko wpływ prędkości obrotowej wrzeciona na wysokość zadziorów względem różnych cieczy chłodząco-smarujących. Grupa naukowców [79] ustaliła, że prędkość skrawania wpływa w znaczącym stopniu (66%) na powstawanie zadziorów względem dwóch pozostałych parametrów: posuwu na obrót i kata wierzchołkowego wiertła. Giasin i Ayvar-Soberanis [31, 32] dokonali pomiaru wysokości oraz grubości zadziorów na wejściu i wyjściu otworów dla czterech parametrów: prędkości obrotowej wrzeciona (n = 1000, 3000, 6000, 9000 obr/min) i prędkości posuwu $(v_f = 100, 300, 600, 900)$ mm/min). Badacze [29] badali tylko jak parametry technologiczne ($v_c = 22,5; 30;$ 37,5 m/min oraz $f_n = 0.015$; 0.025; 0.035 mm/obr) wpływają na wysokość zadzioru na wyjściu otworu.

2. BADANIA SYMULACYJNE WPŁYWU WYBRANYCH WARUNKÓW OBRÓBKI NA DOKŁADNOŚĆ WYMIAROWO KSZTAŁTOWĄ I CHROPOWATOŚĆ POWIERZCHNI OTWORÓW

W analizie literaturowej podjętego tematu przedstawiono modele matematyczne, które zostały wykorzystane do przeprowadzenia własnych badań symulacyjnych dokładności wymiarowo kształtowej i chropowatości powierzchni wykonanych otworów.

2.1. Badania symulacyjne wpływu warunków obróbki na dokładność wykonanych otworów

Większość równań przedstawionych w rozdziale 1 przedstawia tylko zmianę wartości wyjściowych za pomocą parametrów technologicznych. Jednakże niektóre równania są mało rozwinięte w stosunku do innych. W tym podrozdziale zostaną wykonane badania symulacyjne wybranych równań dotyczących wpływu parametrów wejściowych na dokładność wykonanych otworów.

Rys. 13. Wpływ prędkości posuwu v_f i prędkości skrawania v_c na błąd średnicy otworu na podstawie równań (2), (3) i (4)

Analizując wyniki symulacji przedstawione na rys. 13, w którym to badany jest wpływ prędkości posuwu i skrawania na dokładność wykonania otworu w stopie Ti6Al4V. Stwierdzono, że zwiększenie prędkości posuwu pozytywnie wpływa na dokładność wymiarową otworu. Natomiast zwiększenie prędkości skrawania pogarsza dokładność wymiarową otworu. Jednakże równania (2), (3), (4) określają średnice wykonania otworów dlatego też zostały one przekształcone w taki sposób, aby przedstawiały błąd średnicy otworu. Jednocześnie równania nie są tak elastyczne na zmianę parametru prędkości skrawania. Wynika z tego, że równania powyższe można zastosować tylko przy ściśle określonych prędkościach skrawania ($v_c = 7$; 21; 28 m/min).

Rys. 14. Wpływ posuwu na obrót i prędkości obrotowej wrzeciona na błąd średnicy otworu na podstawie równania (6)

Rys. 14 ukazuje wyniki badań symulacyjnych trzech parametrów wejściowych prędkości obrotowej wrzeciona, prędkości posuwu i ciśnienia podawania cieczy chłodząco-smarującej wynoszącego 6 bar na błąd średnicy wywierconych otworów w Ti6Al4V. Zauważono, że przy małych zakresach prędkości obrotowej uzyskuje się bardzo dużą dokładność wywierconych otworów. Jednakże dla prędkości posuwu tendencja ta jest odwrotna czym większy posuw tym mniejszy błąd średnicy otworu.

2.2. Badania symulacyjne wpływu warunków obróbki na odchyłki kształtu i położenia wykonanych otworów

W tym podrozdziale zostaną wykonane własne badania symulacyjne wybranych równań z rozdziału 1.2. dotyczące wpływu parametrów wejściowych na odchyłkę okrągłości i odchyłkę walcowości wykonanych otworów.

Rys. 15. Wpływ głębokości wiercenia, prędkości posuwu i prędkości obrotowej wrzeciona na odchyłkę okrągłości otworu na podstawie równania (15)

Z badań symulacyjnych równania (15) przedstawionych na rys. 15 wynika, że prędkość obrotowa wrzeciona nie ma żadnego wpływu na odchyłkę okrągłości wywierconego otworu w AISI D2. Natomiast prędkość posuwu ma tutaj największe znaczenie, przy wzroście prędkości posuwu rośnie odchyłka okrągłości otworu. Przy założeniu wywiercenia w jednym przejściu.

Rys. 16. Wpływ głębokości wiercenia, prędkości posuwu i prędkości obrotowej wrzeciona na błąd okrągłości otworu na podstawie równania (16) przy założeniu wiercenia w jednym przejściu

Równanie (16) zostało zasymulowane przy założeniu wiercenia w jednym przejściu. Stwierdzono, że zmniejszenie prędkości obrotowej wrzeciona w znaczącym stopniu zmniejsza odchyłkę błędu walcowości otworu w materiale AISI D2. Jednakże posuw nie ma prawie żadnego wpływu na zmianę odchyłki walcowości.

Rys. 17. Wpływ prędkości posuwu i prędkości obrotowej wrzeciona przy założeniu wiercenia w jednym przejściu na błąd okrągłości otworu na podstawie równania (17)

Na rys. 17 przedstawiającym wyniki symulacji widać najlepsze parametry wejściowe wynoszące: n = 5000 obr/min i $v_f = 5mm/min$. Stwierdzono, że wzrost prędkości posuwu zwiększa odchyłkę okrągłości. Natomiast wzrost prędkości obrotowej wrzeciona powoduje spadek odchyłki okrągłości otworu.

2.3. Badania symulacyjne wpływu warunków obróbki na chropowatość powierzchni wykonanych otworów

Ważnym parametrem wyjściowym podczas oceny jakości wywierconego otworu jest chropowatość powierzchni. Najczęściej opisywana jest ona za pomocą parametru Ra. W tym rozdziale zostaną przedstawione niektóre równania z rozdziału 1, które pozwolą przedstawić dotychczasowe osiągnięcia z danej tematyki.

Rys. 18. Wpływ prędkości posuwu i prędkości obrotowej wrzeciona przy założeniu kąta wierzchołka wiertła na poziomie 125° na prognozowanie parametru Ra chropowatości otworu na podstawie równania (21)

Analizując wyniki przedstawione na rys. 18 zauważono, że dla Ti-6Al-4V największą rolę odgrywa prędkość obrotowa wrzeciona im większa tym lepszy wynik parametru Ra. Natomiast czym mniejsza prędkość posuwu tym nieznacznie poprawia się chropowatość powierzchni (parametr Ra).

Rys. 19. Wpływ posuwu na obrót i prędkości skrawania przy suchym wierceniu na prognozowanie parametru Ra chropowatości otworu w AISI 1045 na podstawie równania (23)

Z badania symulacyjnego równania (23) podczas nie stosowania żadnego środka smarnego-chłodzącego stwierdzono, że najbardziej korzystniejszymi parametrami dla parametru Ra są: prędkość skrawania z zakresu około 6 do 10 m/min oraz posuw na obrót wynoszący od 0,1 do 0,13 mm/obr Jednakże zwiększenie prędkości skrawania oraz posuwu na obrót znacząco pogarsza chropowatość powierzchni.

Rys. 20. Wpływ posuwu na obrót i prędkości skrawania przy użyciu wiertła z powłoką z azotku tytanu (TiN) na parametr Ra chropowatości otworu w kompozycie na osnowie metalowej z aluminium na podstawie równania (25)

Dla tego specyficznego przypadku przedstawionego na rys. 20 stwierdzono, że duża prędkość obrotowa wrzeciona wraz z małym posuwem wpływają korzystnie na chropowatość powierzchni otworów wierconych w kompozycie na osnowie metalowej z aluminium.

2.4. Badania symulacyjne wpływu warunków obróbki na zadziory wokół wykonanych otworów

W większości przypadków zadziory z otworów, usuwane są w kolejnych procesach technologicznych. Jednakże można skrócić operację wytworzenia danego elementu dostosowując tak parametry wejściowe, aby uzyskać, jak najmniejszy zadzior na wyjściu. W niniejszym rozdziale zostaną przedstawione własne badania symulacyjne już istniejących wzorów dla zadziorów powstających wokół wykonanych otworów.

Rys. 21. Wpływ posuwu na obrót i prędkości skrawania na wysokość zadziorów wokół otworu w materiale AA7010 na podstawie równania (28)

Najmniejszą wysokość zadzioru otrzymamy przy: posuwie na obrót wynoszącym około 0,18 do 0,22 mm/obr oraz prędkości skrawania na poziomie od 80 do 150 m/min. Największe zadziory powstaną dla bardzo małym posuwie na obrót wynoszącym 0,8 mm/obr oraz małej prędkości skrawania 50 m/min.

Rys. 22. Wpływ posuwu na obrót i prędkości skrawania na wysokość zadziorów wokół otworu w materiale Ti-6Al-4V na podstawie równania (29)

W tym przypadku na rys. 22. mamy dwie optymalne kombinacje doboru parametrów wejściowych. Pierwsza z zakresu posuwu na obrót od 0,14 do

0,21 mm/obr oraz małej prędkości skrawania wynoszącej 10 m/min. Drugą opcją jest wysoka prędkość skrawani rzędu 30 m/min oraz takim samym zakresem posuwu na obrót co w pierwszej opcji. Druga opcja jest optymalna ze względu na produktywność procesu wiercenia.

Rys. 23. Wpływ posuwu na obrót oraz prędkości obrotowej wrzeciona na wysokość zadziorów wokół otworu na podstawie równania (30)

Badanie symulacyjne wysokości zadzioru przedstawiono na rys. 23. Najmniejszą wysokość zadzioru powstanie przy następujących parametrach wejściowych: prędkość obrotowa wrzeciona wynosząca 2000 obr/min oraz posuwie na obrót wynoszącym 0,1 mm/obr Zmniejszenie posuwu na obrót niezależnie od zastosowanej prędkości obrotowej wrzeciona zmniejsza wysokość zadzioru. Natomiast zwiększanie prędkości obrotowej wrzeciona również powoduje zmniejszanie wysokości zadzioru.

Wnioski:

- 1. Analiza literatury wykazała, że jakość wykonanego otworu oceniana jest najczęściej za pomocą następujących parametrów wyjściowych: odchyłki walcowości, odchyłki okrągłości, odchyłki prostoliniowości, błędu średnicy, chropowatości powierzchni oraz wysokości zadzioru na wyjściu.
- 2. Modele matematyczne pozwalają określać przedziały w których to parametr badany może uzyskać małe bądź duże wartości
- 3. Osiągnięcie jak najlepszych parametrów jakości otworu pozwala na zmniejszenie błędu w dalszych operacjach (brak tzw. dziedziczenia technologicznego).
- 4. Dla częstych przypadków, gdzie wiercenie jest obróbką ostateczną jakość technologiczna otworu decyduje o jego właściwościach eksploatacyjnych.
3. HIPOTEZY I ZAKRES PRACY

Na podstawie przeglądu literatury, który został, przedstawiony w poprzednich rozdziałach zauważono, że parametrami wyjściowymi procesu wiercenia, na podstawie których prowadzona jest ocena jakości wykonanego otworu to: odchyłka walcowości, odchyłka okrągłości, odchyłka prostoliniowości, błąd średnicy otworu, chropowatość powierzchni oraz wysokość i szerokość zadzioru na wyjściu. Jednakże większość prac badawczo-rozwojowych uwzględnia tylko parametry technologiczne procesu wiercenia.

W literaturze spotyka się podział procesu wiercenia ze względu na różne układy kinematyk. Jednakże brak jest jakichkolwiek badań uwzględniających ten czynnik wejściowy jako zmienna wpływająca na jakość wykonanych otworów.

3.1. Hipotezy pracy

Na podstawie analizy literatury przedstawionej w pierwszym i drugim rozdziale, korzystając z wiedzy i doświadczeń nabytych w wyniku przeprowadzonych prac badawczych oraz obserwacji sformułowano poniższe hipotezy:

- istnieje silny związek pomiędzy parametrami procesu wiercenia, układami kinematycznymi a parametrami jakościowymi wykonanego otworu,
- istnieją zakresy optymalnych parametrów technologicznych w każdym układzie kinematycznym względem badanych parametrów oceny jakości otworów,
- dokładna analiza parametrów wejściowych i wyjściowych procesu wiercenia umożliwia zbudowanie modeli matematycznych do przewidywania odchyłki walcowości, odchyłki prostoliniowości, odchyłki okrągłości, błędu średnicy, chropowatości powierzchni, szerokości oraz wysokości zadzioru na wyjściu otworu.

3.2. Zakres pracy

Udowodnienie postawionych w pracy hipotez wymagało przeprowadzenia badań procesu wiercenia. Poniżej przedstawiono plan oraz cele pracy badawczej:

- opracowanie metodyki procesu wiercenia,
- opracowanie stanowiska badawczego oraz metodyki pomiarów odchyłki walcowości, odchyłki okrągłości, odchyłki prostoliniowości, błędu średnicy, chropowatości powierzchni, szerokości oraz wysokości zadzioru,
- analiza i ocena parametrów wejściowych takich jak: prędkość skrawania, posuw na obrót oraz układ kinematyczny na jakość wykonanego otworu,
- opracowanie tablic ortogonalnych w celu weryfikacji poszczególnych parametrów wejściowych,

- zbudowanie modeli prognozujących parametry oceny jakości otworu dla różnych materiałów,
- zestawienie i porównanie wyników eksperymentalnych z opracowanymi modelami,
- zobrazowanie prognozowanych wartości oceny jakości otworu dla wybranych przedziałów prędkości skrawania, posuwu na obrót oraz układów kinematycznych,
- wnikliwa analiza powstających odchyłek walcowości oraz odchyłek okrągłości otworu.
- optymalizacja wielokryterialna parametrów wejściowych Grey Relational Analysis

3.3. Elementy nowości w pracy

- uwzględnienie w ocenie jakości wierconego otworu wcześniej nie ujmowanego parametru wejściowego jakim jest układ kinematyczny procesu wiercenia,
- opracowanie modeli matematycznych do prognozowania odchyłek walcowości, odchyłek okrągłości, odchyłek prostoliniowości, błędów średnic, chropowatości powierzchni, szerokości oraz wysokości zadziorów dla różnych materiałów,
- wnikliwa analiza odchyłki walcowości oraz odchyłki okrągłości zawierająca nie uwzględniany dotychczas w pracach naukowo badawczych parametr wejściowy jakim jest układ kinematyczny procesu wiercenia.

4. METODYKA BADAŃ EKSPERYMENTALNYCH PROCESU WIERCENIA

Badany proces wiercenia przedmiotów obrotowo-symetrycznych przy różnych kinematykach procesu wiercenia zostanie przeprowadzony przy pomocy centrum tokarskiego z napędzanymi narzędziami.

Rozdział czwarty przedstawia charakterystyki trzech układów kinematycznych, narzędzi, oprawki, maszyn, materiałów, mocowań, kształtu oraz kodowania próbek wykorzystanych w badaniach.

4.1. Charakterystyka procesu wiercenia w różnych układach kinematycznych

Wszystkie prace eksperymentalne zostały wykonane w trzech różnych układach kinematycznych procesu wiercenia:

 układ kinematyczny pierwszy (KIN I) – przedmiot obrabiany jest nieruchomy, natomiast narzędzie wykonuje jednocześnie ruch główny (obrotowy) oraz posuwowy - prostoliniowy, co zostało przedstawione na rys. 24,

Rys. 24. Układ kinematyczny pierwszy

 układ kinematyczny drugi (KIN II) – przedmiot obrabiany wykonuje ruch główny (obrotowy), natomiast narzędzie wykonuje tylko ruch posuwowy – prostoliniowy, równoległy do osi obrotu przedmiotu, co zostało przedstawione na rys. 25,

Rys. 25. Układ kinematyczny drugi

• układ kinematyczny trzeci (KIN III) – przedmiot obrabiany wykonuje ruch obrotowy, natomiast narzędzie wykonuje ruch obrotowy w przeciwnym kierunku do ruchu przedmiotu oraz ruch posuwowy - prostoliniowy, co przedstawiono na rys. 26.

Rys. 26. Układ kinematyczny trzeci

4.2. Charakterystyka narzędzia użytego do badań

W badaniach procesu wiercenia zastosowano wiertło z węglików spiekanych 5D o średnicy ϕ 6,0 mm firmy ATORN UNI z powłoką TiAlNPlus (azotek tytanu glinu) z możliwością chłodzenia wewnętrznego przez narzędzie. Powłoka azotku tytanu aluminium posiadała mikrotwardość rzędu 30 – 33 GPa i charakteryzuje się odpornością na działanie wysokich temperatur. Stosowanie takiej powłoki zalecane jest przy obróbce stali zwykłej, stali ulepszonej cieplnie, stali nierdzewnej, żeliwa szarego, aluminium, stopów aluminium, miedzi, stopów miedzi, tworzyw sztucznych oraz stopów tytanu i niklu [S1]. W próbach skrawania zdecydowano się na zastosowanie powyższego wiertła ze względu na możliwość wykorzystania go do wiercenia otworów w szerokiej gamie materiałów, dużej żywotności, która zapewnia wielowarstwowa powłoka oraz odpowiednie wykończenie krawędzi skrawającej. Poniżej w tabeli 1 przedstawiono podstawowe parametry techniczne wiertła stosowanego w próbach skrawania.

Średnica wiercenia	\$ 6 mm
Materiał narzędzia	VHM
Powłoka części skrawającej	TiAlNPlus
Тур	HPC UNI
Zasilanie płynem chłodzącym	Wewnętrzne
Mocowanie od strony maszyny	Chwyt cylindryczny HA
Kąt wierzchołkowy	140°
Średnica walcowej części chwytowej	6 mm
Długość rowka wiórowego	44 mm
DIN	6537
Ciężar brutto	0,036 kg

Tabela 1. Parametry techniczne wiertła wykorzystanego w badaniach

Rys. 27. Widok wiertła ATORN UNI z powłoką TiAlNPlus

4.3. Charakterystyka oprawki narzędziowej

Wiertło zostało zamocowane w oprawce napędzanej osiowo VDI30 SAUTER 113180 za pomocą tulejki ER25. Jest to oprawka z możliwością zastosowania chłodzenia wewnętrznego oraz zewnętrznego.

Rys. 28. Widok oprawki napędzanej VDI30 firmy SAUTER model 113180 [S2]

Oprawka przedstawiona na rys. 28 charakteryzuje się bardzo dobrą odpornością na zginanie i skręcanie. Głównymi zaletami oprawki są:

- możliwość napędzania osiowego narzędzi,
- chłodzenie narzędzia wewnętrznie bądź zewnętrznie co pozwala na zwiększenie żywotności ostrza oraz ułatwia ewakuację wiórów,
- łatwy system mocowania narzędzi w postaci tulei zaciskowej.

4.4. Charakterystyka maszyn stosowanych w badaniach

Głównym celem przeprowadzonych badań było określenie wpływu kinematyki procesu wiercenia na jakość uzyskanych otworów. W celu przebadania trzech różnych układów kinematycznych procesu wiercenia zastosowano centrum tokarskie firmy Gildemeister model CTX alpha 500 znajdujące się w Laboratorium Obrabiarek Sterowanych Numerycznie Politechniki Świętokrzyskiej. Obrabiarka posiadała dwunastopozycyjną głowicę z napędzanymi narzędziami w standardzie VDI30 DIN 5480, maksymalna prędkość obrotowa wrzeciona 5000 obr/min, moc znamionowa napędu 20 kW oraz moment obrotowy 2200 Nm. Maszyna dzięki swojej konstrukcji posiada dużą sztywność, która zapewnia stabilność procesom obróbki. Obrabiarka posiada również stację filtrującą chłodziwo.

Parametry obrabiarki:

• głowica: dwanaście narzędzi na oprawki VDI 30,

- 12 gniazd napędzanych,
- sterowana oś C,
- moc napędu 20 kW,
- średnica toczenia nad łożem Ø 290 mm,
- maksymalna długość toczenia 500 mm,
- droga osi X (planowanie) 190 mm,
- uchwyt trójszczękowy na wrzecionie głównym SMW Autoblok Ø 210mm, przelot Ø 52 mm,
- maksymalna średnica wałka przelotowego Ø 50 mm,
- przelotowe wrzeciono,
- odbiornik detalu,
- system chłodzenia,
- waga maszyny 4300 kg,
- wymiary gabarytowe maszyny 3465 x 2510 x 1825 mm [S3].

Rys. 29. Widok przestrzeni roboczej obrabiarki CTX alpha 500 firmy DMG Gildemeister

Do pomiaru średnicy, odchyłki walcowości, odchyłki prostoliniowości oraz odchyłki okrągłości wykorzystano współrzędnościową maszynę pomiarową Prismo Navigator firmy Zeiss (rys. 30.) znajdującą się w Laboratorium Komputerowych Pomiarów Wielkości Geometrycznych Politechniki Świętokrzyskiej. Maszyna charakteryzuje się: wysoką dynamiką, dokładnością, dużą odpornością na warunki otoczenia, dużą sztywnością, szybkością wykonywania pomiarów oraz pasywnym tłumieniem drgań elastomeru [S4]. W tabeli poniżej przedstawiono parametry stosowanej maszyny pomiarowej.

Navigator		
Zakres pomiarowy X	900 mm	
Zakres pomiarowy Y	1200 mm	
Zakres pomiarowy Z	700 mm	
Błąd pomiaru długości	0,9+L/350 μm	
Dokładność sondy	1.0.um	
pomiarowej	1,0 μΠ	
Błąd pomiaru kształtu	1,0 μm	
Błąd pomiaru	1 9 um	
skanowania	1,9 μm	

Tabela 2. Parametry techniczne współrzędnościowej maszyny pomiarowej Prismo

Rys. 30. Widok współrzędnościowej maszyny pomiarowej Prismo Navigator firmy Zeiss

Do pomiaru chropowatości powierzchni zastosowano profilometr stykowy Form Talysurf PGI 1230 firmy Taylor Hobson (rys. 31.) znajdujący się w Laboratorium Komputerowych Pomiarów Wielkości Geometrycznych Politechniki Świętokrzyskiej. Profilometr umożliwia bardzo dokładne pomiary chropowatości powierzchni ze względu na zastosowaną głowicę interferometryczną. Rozdzielczość pozycjonowania wynosi poniżej 1 µm. Zakres pomiarowy wynosi 12,5 mm. Prostoliniowość zespołu przesuwu jest mniejsza niż 0,2 µm na długości 200 mm.

Rys. 31. Widok profilometru stykowego Form Talysurf PGI 1230 firmy Taylor Hobson

Do pomiaru wysokości oraz szerokości zadzioru na wyjściu i wejściu wykorzystano mikroskop Hirox KH-8700 (rys. 32.) wyposażony w obiektyw rewolwerowy z zakresem powiększeń 32x-5000x z podwójnym i mieszanym

systemem oświetlenia (współosiowe i pierścieniowe). Posiada oświetlenie LED o dużej intensywności z temperaturą barwową 5700 K.

Rys. 32. Widok mikroskopu Hirox KH-8700

Do pomiaru rzeczywistego składu każdego materiału wykorzystano skaningowy mikroskop elektronowy Phenom XL przedstawiony na rys. 33. Czas niezbędny do uzyskania obrazu elektronowego wynosi do 60 s. Ma on możliwość uzyskania powiększenia do 200 000x. Posiada on bardzo długi czas życia źródła elektronów CeB6 (2000 godzin). Źródło elektronów pracuje z napięciem przyspieszającym w zakresie od 5 do 20 kV.

Rys. 33. Widok skaningowego mikroskopu elektronowego Phenom XL

4.5. Charakterystyka materiałów

Po przeprowadzonej analizie materiałów stosowanych w przemyśle wytypowano pięć materiałów w których wiercone są otwory: stal C45, stal ulepszoną cieplnie 40HM+QT, stop aluminium PA6, stop mosiądzu MO58 oraz stop niklowochromowy Inconel 718. Rzeczywiste składy chemiczne badanych materiałów określono za pomocą przedstawionego w poprzednim podrozdziale skaningowego mikroskopu elektronowego Phenom XL.

Stal C45 (1.0503) – stal niestopowa jakościowa do ulepszania cieplnego, bardzo popularna w produkcji części maszyn szczególnie elementów odporniejszych na ścieranie, łatwa w obróbce, duża wytrzymałość, duża ciągliwość, trudna w spawaniu, słaba skrawalność.

Tabela 3	B. Rze	czyw	isty pı	ocento	owy sl	sład	chemi	czny s	tali C45
	С	Mn	Si	Р	S	Cr	Ni	Mo	

C	IVIII	51	1	כ		111	MIO
0,45	0,5	0,32	0,03	0,02	0,2	0,15	0,03
,			,	,	,		,

Twardość	Wytrzymałość na	Granica	Moduł sprężystości					
HB	rozciąganie, Rm	plastyczności, Re	podłużnej, E					
≤ 229	560 – 850 MPa	275 – 490 MPa	198 - 207 GPa					

Tabela 4. Właściwości stali C45 [S5]

Stal ulepszona cieplnie 40HM+QT (1.7225+qt, 42CrMo4+QT) – stal ulepszona cieplnie, łatwa w obróbce cieplnej i mechanicznej, nie spawalna, zastosowanie przy elementach maszyn narażonych na zmienne obciążenia o bardzo dużej ciągliwości i wytrzymałości.

Tabela 5. Rzeczywisty procentowy skład chemiczny stali ulepszonej cieplnie

	40HM+Q1									
С	C Mn Si			P S Cr Ni						
0,41	0,63	0,32	0,03	0,02	0,93	0,1	0,2			

1	Tabela 0. Właserwoser stali diepszonej elepline 401101+Q1 [35]								
Twardość	Wytrzymałość na	Granica	Moduł sprężystości						
HB	rozciąganie, Rm	plastyczności, Re	podłużnej, E						
290 - 330	1000 - 1200 MPa	> 750 MPa	200- 210 GPa						

Tabela 6. Właściwości stali ulepszonej cieplnie 40HM+QT [S5]

Stop aluminium PA6 (3.1325, AlCuMg1) – stop aluminium, niska odporność na korozję, dobra podatność na zginanie, tłoczenie, łatwo obrabialny, słabo spawalny. Wykorzystywany w niskich oraz podwyższonych temperaturach do produkcji elementów konstrukcyjnych samolotów, sprzętu wojskowego, części do budowy maszyn, motoryzacji.

Tabela 7. Rzeczywisty procentowy skład chemiczny stopu aluminium PA6

Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
0,22	0,62	3,69	0,44	0,97	0,09	0,27	0,18

Twardość	Wytrzymałość na	Granica	Moduł sprężystości
HB	rozciąganie, Rm	plastyczności, Re	podłużnej, E
101 - 110	350 - 390 MPa	240 - 260 MPa	72,5 GPa

Tabela 8. Właściwości stopu aluminium PA6 [S5]

Mosiądz MO58 (2.0402, CuZn40Pb2) – stop mosiądzu, dobra podatność do obróbki skrawaniem, podatny do obróbki plastycznej na gorąco oraz kucia. Wykorzystywany do produkcji skomplikowanych części, do przewodów rurowych, zacisków oraz armatury przemysłowej.

Tabela 9. Rzeczywisty procentowy skład chemiczny mosiądzu MO58

Cu	Al.	Fe	Ni	Pb	Sn
57,2	0,02	0,28	0,29	1,73	0,25

Twardość	Wytrzymałość na	Granica	Moduł sprężystości
HB	rozciąganie, Rm	plastyczności, Re	podłużnej, E
90	410 MPa	160 MPa	96 GPa

Tabela 10. Właściwości mosiądzu MO58 [S5]

Inconel 718 – stop niklowo-chromowy zawierający duże ilości molibdenu, niobu, żelaza oraz mniejsze ilości tytanu i aluminium. Posiada dużą wytrzymałość, odporność na korozję, odporność na pękanie. Znajduje zastosowanie w reaktorach jądrowych, pompach, silnikach rakietowych, statkach kosmicznych oraz turbinach gazowych.

Tabela 11. Rzeczywisty procentowy skład chemiczny Inconelu 718

Cu	Al.	Ni	Cr	Nb + Ta	Ti	
0,28	0,52	52,59	20,51	4,81	0,96	

Tablea 12. Wildsetwoset medicia 710 [55]								
Twardość	Wytrzymałość na	Granica	Moduł sprężystości					
HB	rozciąganie, Rm	plastyczności, Re	podłużnej, E					
363	930 MPa	550 MPa	204,9 GPa					

Tabela 12. Właściwości Inconelu 718 [S5]

4.6. Mocowanie, kształt oraz sposób kodowania próbek do badań

Kształt próbki został dobrany tak, aby odpowiadał możliwością mocowania w centrum tokarskim. Próbki o wymiarach Ø 30 mm i długości 30 mm zostały splanowane czołowo. Następnie zamocowano je w uchwycie trójszczękowym samocentrującym SMW Autoblok KNCS-N 210-52 o zacisku 6,5kN, gdzie wiercono otwory przelotowe o średnicy Ø 6 mm (l/d = 5).

Rys. 34. Kodowanie próbek badawczych

Na rys. 34 przestawiono sposób kodowania próbek, gdzie część pierwsza oznacza rodzaj narzędzia stosowanego w badaniu (Ti- wiertło węglikowe ATORN UNI z powłoką azotku tytanu aluminium). Część druga oznacza rodzaj układu kinematycznego procesu wiercenia zastosowanego podczas badania (KIN I – pierwszy układ kinematyczny, KIN II – drugi układ kinematyczny, KIN III – trzeci układ kinematyczny). Część trzecia oznacza parametry technologiczne procesu, które przedstawione są w tabeli 13. Część czwarta oznacza rodzaj materiału zastosowanego w badaniu (A – stop aluminium PA6, S – Stal 45, Q – Stal ulepszona cieplnie 40HM+QT, M – mosiądz MO58, I – Inconel 718).

Materiał	C45, 40HM+QT, P	Inconel 718		
Poziom	n, obr/min	<i>f_n</i> , mm/obr	n, obr/min	$f_n,$ mm/obr
1	4775	0,14	800	0,075
2	3979	0,12	637	0,06
3	3979	0,10	955	0,09

Tabela 13. Zestawy wartości parametrów technologicznych użytych w badaniach

Rys. 35. Przykłady kodowanych próbek

5. ANALIZA ORAZ OPRACOWANIE WYNIKÓW BADAŃ

W tym rozdziale przedstawiono wyniki badań symulacyjnych oraz eksperymentalnych. Obliczono wpływ parametrów wejściowych procesu wiercenia: prędkości skrawania, posuwu na obrót oraz układu kinematycznego na parametry wyjściowe otworu takie jak: odchyłka walcowości, odchyłka prostoliniowości, odchyłka okrągłości, błąd średnicy, chropowatość powierzchni, wysokość oraz szerokość zadzioru na wyjściu otworu. Część badań zawartych w tej dysertacji opublikowano jako cztery publikacje w czasopiśmie z listy Filadelfijskiej [80, 81, 82, 83].

Na podstawie przeglądu literatury stwierdzono, brak jakichkolwiek badań wpływu parametru wejściowego jakim jest układ kinematyki procesu wiercenia na jakość wykonania otworów. Postanowiono wykonać badania eksperymentalne w celu uzupełnienia luki w stanie prac naukowo badawczych związanych z różnymi układami kinematycznymi stosowanymi podczas wiercenia. Na wstępie wytypowano zestawy parametrów technologicznych dla procesu wiercenia na podstawie przeglądu literatury, prac badawczych oraz własnych doświadczeń. Do przeprowadzenia prac eksperymentalnych stworzono zestaw kombinacji różnych parametrów wejściowych przedstawionych w tabeli 14. Układ kinematyczny został zapisany jako równanie (34) zawierające wypadkową prędkość obrotową procesu skrawania.

$$KIN = n_n - n \tag{34}$$

gdzie: KIN – układ kinematyczny n_n – prędkość obrotowa narzędzia, n – prędkość obrotowa wrzeciona

Materiał	C45, 40H	6, MO58	Inconel 718			
Nr	<i>n</i> ,	f_n ,	KIN,	<i>n</i> ,	f_n ,	KIN,
eksperymentu	obr/min	mm/obr	obr/min	obr/min	mm/obr	obr/min
1	4775	0,14	4775	800	0,075	800
2	4775	0,14	-4775	800	0,075	-800
3	4775	0,14	0	800	0,075	0
4	3979	0,14	3979	637	0,075	637
5	3979	0,14	-3979	637	0,075	-637
6	3979	0,14	0	637	0,075	0
7	3183	0,14	3183	955	0,075	955
8	3183	0,14	-3183	955	0,075	-955
9	3183	0,14	0	955	0,075	0
10	4775	0,12	4775	800	0,06	800

Tabela 14. Zestawy parametrów wejściowych stosowanych w badaniach

Materiał	C45, 40H	HM+QT, PA	6, MO58	Inconel 718		
Nr	<i>n</i> ,	f_n ,	KIN,	<i>n</i> ,	f_n ,	KIN,
eksperymentu	obr/min	mm/obr	obr/min	obr/min	mm/obr	obr/min
11	4775	0,12	-4775	800	0,06	-800
12	4775	0,12	0	800	0,06	0
13	3979	0,12	3979	637	0,06	637
14	3979	0,12	-3979	637	0,06	-637
15	3979	0,12	0	637	0,06	0
16	3183	0,12	3183	955	0,06	955
17	3183	0,12	-3183	955	0,06	-955
18	3183	0,12	0	955	0,06	0
19	4775	0,1	4775	800	0,09	800
20	4775	0,1	-4775	800	0,09	-800
21	4775	0,1	0	800	0,09	0
22	3979	0,1	3979	637	0,09	637
23	3979	0,1	-3979	637	0,09	-637
24	3979	0,1	0	637	0,09	0
25	3183	0,1	3183	955	0,09	955
26	3183	0,1	-3183	955	0,09	-955
27	3183	0,1	0	955	0,09	0

5.1. Analiza dokładności wymiarowo kształtowej wykonanych otworów

W tym podrozdziale przedstawiono analizę odchyłki walcowości, odchyłki prostoliniowości, odchyłki okrągłości oraz błędu średnicy otworu w stosunku do parametrów wejściowych przedstawionych w tab. 14. Analiza została podzielona na trzy etapy. Pierwsza analiza pomiarów geometrii wyrobów, w której przedstawiono oraz opisano parametry mierzone. Metody zastosowane do pomiarów oraz ich parametry. W drugiej części wykonano analizę statystyczną ANOVA oraz dokładnie przeanalizowano jej wyniki i wyciągnięto wnioski. W ostatniej części przedstawiono badania symulacyjne, w których to układ kinematyczny ma największy wpływ na badany parametr wyjściowy.

5.1.1. Analiza pomiarów geometrii wyrobów

Po przeprowadzeniu prób skrawania przystąpiono do kolejnej części badań tj.: pomiaru średnicy otworu, odchyłki walcowości, czterech odchyłek prostoliniowości przesuniętych względem siebie o 90° oraz odchyłki okrągłości, które przeprowadzono na współrzędnościowej maszynie pomiarowej Prismo Navigator firmy Zeiss. Pomiary otworów przeprowadzone zostały z zastosowaniem sondy pomiarowej z kulką rubinową o średnicy 3 mm. Pomiary realizowane były z prędkością 5 mm/s, dla każdego mierzonego okręgu zebrano 1500 punktów pomiarowych. Do pomiaru odchyłki walcowości zastosowano strategie profilu okrągłości (w pięciu przekrojach). Dla odchyłki okrągłości i walcowości zastosowano filtr Gaussa w zakresie 15 – 50 fal/obrót. Natomiast podczas pomiarów odchyłki prostoliniowości użyto filtr Gaussa $\lambda c = 2,5$ mm oraz $\lambda c = 0,8$ mm. Wybrano 15 UPR i 50 UPR ze względu na wymogi norm [N4, N5] mówiące o stosunku średnicy okręgu odniesienia i promienia końcówki trzpienia pomiarowego. Do dalszych analiz wybrano 15 UPR i F2,5 ze względu na większą redukcję błędów tzw. większe odfiltrowanie profilu. Plan pomiarowy został przedstawiony na rys. 36.

Rys. 36. Strategia pomiaru próbek

Po obliczeniu i uporządkowaniu danych wyniki zostały zestawione w tabelach 15-19. Całkowity stopień swobody efektów wyjściowych wynosi 9. Aby umieścić wszystkie dane wybrano tablicę ortogonalną L27. Kolorem zielonym zaznaczono wartości dla rozstępu 0 – 30%. Kolorem żółtym oznaczono przedział od 30 – 70 %. Natomiast kolorem czerwonym powyżej 70%. Rozstęp liczony jest jako różnica granicznych wartości.

Kodowanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm
TiI1S	17,5	16,7	7,6	-0,5
TiII1S	14,4	10,9	6,1	-1,0
TiIII1S	17,4	9,2	5,5	-2,0
TiI2S	11,4	14,0	5,1	-1,7
TiII2S	9,5	10,4	5,2	-1,4
TiIII2S	10,7	8,5	3,4	-0,4
TiI3S	12,1	10,2	5,8	-3,0
TiII3S	11,8	14,3	5,1	-1,7
TiIII3S	19,7	14,1	4,3	-0,3
TiI4S	11,4	10,6	4,4	-0,4
TiII4S	11,4	11,5	4,7	-0,7
TiIII4S	16,5	12,9	3,7	0,6
TiI5S	16,3	14,9	4,5	-1,3
TiII5S	19,6	15,6	3,1	0,5
TiIII5S	16,8	14,5	3,3	0,0
TiI6S	23,8	20,2	4,8	-2,4
TiII6S	13,5	17,2	4,4	-0,8
TiIII6S	18,6	20,0	4,6	0,6
TiI7S	17,5	16,8	7,0	3,8
TiII7S	20,4	18,4	5,2	1,3
TiIII7S	25,0	21,2	4,7	0,4
TiI8S	21,6	17,8	5,2	0,6
TiII8S	22,1	20,1	5,3	1,3
TiIII8S	27,2	28,7	4,4	2,7
TiI9S	35,9	26,8	5,8	-2,4
TiII9S	36,6	29,8	6,0	3,0
TiIII9S	51,8	44,3	6,4	3,6

Tabela 15. Wyniki dokładności wymiaru i kształtu próbek ze stali 45

Kodowanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm
Til1Q	9,7	10,4	4,1	0,0
Till1Q	12,7	11,8	3,9	0,8
Till1Q	12,7	11,8	3,6	0,5
Til2Q	14,4	15,7	4,7	-1,0
Till2Q	12,1	12,5	4,5	-0,7
Till12Q	15,6	14,3	5,0	-0,5
Til3Q	16,3	11,6	4,2	-0,7
Till3Q	13,2	14,3	4,7	-1,3
TillI3Q	10,7	11,2	4,8	0,2
Til4Q	7,5	7,4	4,4	-0,6
Till4Q	9,8	9,6	4,4	-0,7
Tilll4Q	14,5	14,6	3,7	0,5
Til5Q	9,8	9,5	4,1	-1,1
Till5Q	12,7	12,0	4,6	-0,9
Till15Q	12,2	11,0	4,2	-0,4
Til6Q	10,3	12,7	3,8	-1,2
Till6Q	12,9	13,6	4,6	-1,7
Tilli6Q	13,6	17,6	4,3	-0,3
Til7Q	12,5	10,6	3,9	0,1
Till7Q	14,8	13,2	4,0	-0,4
Till17Q	18,6	11,3	3,9	1,1
Til8Q	13,7	11,2	3,4	-0,5
Till8Q	13,9	13,0	4,0	-0,4
Till18Q	12,7	9,8	4,1	-0,4
Til9Q	16,8	16,8	3,2	-0,9
Till9Q	24,2	21,6	4,3	1,2
Tilli9Q	24,6	21,7	4,1	1,9

Tabela 16. Wyniki dokładności wymiaru i kształtu próbek ze stali ulepszonej cieplnie 40HM+QT

Kodowanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm
Til1A	28,2	22,7	9,0	9,9
Till1A	28,8	21,1	11,1	9,3
Till1A	39,2	36,6	14,9	22,8
Til2A	48,0	34,1	16,9	30,4
Till2A	46,3	33,1	15,9	21,6
Till12A	37,1	24,5	17,4	22,6
Til3A	49,2	37,6	14,4	30,2
Till3A	43,4	32,5	15,8	28,1
Tilli3A	41,7	31,4	16,2	28,7
Til4A	39,8	33,0	12,0	32,4
Till4A	39,8	34,7	16,2	27,6
Tilli4A	47,8	38,0	14,9	25,4
TiI5A	56,5	48,2	18,0	41,4
Till5A	52,7	35,1	15,4	36,5
Tilli5A	61,2	50,5	17,9	47,1
Til6A	48,2	42,2	14,8	38,8
Till6A	52,2	44,0	16,6	31,0
Tilli6A	51,1	40,0	18,0	41,6
Til7A	37,7	29,8	10,9	30,7
Till7A	44,1	31,6	10,9	28,8
Tilli7A	39,5	37,3	14,5	41,2
Til8A	49,8	36,7	12,5	43,1
Till8A	49,5	35,1	11,8	38,3
Tilli8A	49,1	43,6	12,4	44,4
Til9A	48,2	42,3	12,8	32,7
Till9A	53,5	45,7	5,7	37,9
Tilli9A	45,6	44,4	5,8	38,7

Tabela 17. Wyniki dokładności wymiaru i kształtu próbek ze stopu aluminium PA6

Kodowanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm
Til1M	101,0	76,7	6,6	93,8
Till1M	104,7	78,7	7,6	99,3
Till1M	62,3	56,4	6,2	92,8
Til2M	104,7	89,4	6,8	90,5
Till2M	102,2	79,1	10,5	102,4
Tilll2M	102,2	52,4	12,2	108,7
Til3M	112,2	80,4	4,9	106,6
Till3M	125,5	63,2	5,0	111,5
Tilli3M	121,5	60,8	9,7	116,2
Til4M	86,2	63,3	4,3	105,2
Till4M	98,0	66,7	3,2	106,1
Tilli4M	86,8	51,5	4,7	116,2
Til5M	119,5	76,9	6,4	98,6
Till5M	103,0	79,6	5,1	98,2
Tilli5M	100,3	63,1	9,0	108,0
Til6M	101,1	69,6	7,7	99,8
Till6M	105,4	73,8	5,5	110,0
Tilli6M	112,0	64,6	7,2	117,5
Til7M	99,4	49,3	4,7	99,8
Till7M	104,6	57,3	3,2	103,4
Tilli7M	87,6	44,8	4,9	112,7
Til8M	101,1	63,4	9,8	75,5
Till8M	84,9	64,5	8,1	108,7
Till18M	91,1	59,3	8,5	105,9
Til9M	74,7	52,6	5,8	84,5
Till9M	88,6	65,7	5,8	100,9
Tilli9M	81,8	57,2	9,4	106,1

Tabela 18. Wyniki dokładności wymiaru i kształtu próbek z mosiądzu MO58

Kodowanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE <i>,</i> μm
Til1I	33,3	32,0	7,0	20,6
Till1I	48,0	39,2	6,3	24,7
Till11	47,8	27,4	6,7	26,8
Til2I	63,2	35,9	5,6	14,5
Till2I	30,0	27,1	6,1	8,4
Till121	14,3	12,0	5,7	-3,0
Til3I	34,9	31,8	7,1	12,7
Till3I	26,6	18,5	4,5	2,5
Till131	10,9	13,3	5,0	-1,7
Til4I	18,8	10,4	6,4	9,1
Till4I	21,4	12,2	5,8	7,6
Tilll4I	23,5	16,8	5,4	5,1
Til5I	19,9	12,8	5,1	9,5
Till5I	14,4	10,3	4,9	12,3
Till151	20,4	11,9	4,8	4,1
Til6I	23,9	14,3	5,5	13,5
Till6I	26,7	17,8	3,6	16,3
Tilli6I	22,0	12,3	4,8	11,0
Til7I	55,6	23,6	4,9	53,8
Till7I	47,0	21,2	5,6	32,6
Till171	45,0	24,4	5,4	38,7
Til8I	52,1	41,8	4,2	63,0
Till8I	55,3	29,1	5,2	37,1
Till181	58,1	38,7	5,6	42,9
Til9I	64,0	34,0	5,8	51,2
Till9I	59,5	42,7	4,0	33,2
Till191	51,0	31,1	5,3	40,6

Tabela 19. Wyniki dokładności wymiaru i kształtu próbek z Inconelu 718

Błąd średnicy otworu dla stali C45 oraz stali ulepszonej cieplnie 40HM+QT w niektórych kombinacjach był ujemny. Jest to spowodowane niepewnością pomiaru rzędu 1 µm oraz odkształceniami sprężystymi materiałów podczas badań.

Optymalnymi parametrami wejściowymi (które umożliwiają uzyskanie najmniejszych wartości parametrów wyjściowych) dla stali C45 były następujące zestawy: TiIII2S, TiIII3S, TiII4S, TiIII4S, TiIII5S, TiIII5S oraz TiII6S. Wartości błędu średnicy i odchyłki kształtu były najniższe, mieszczące się w 30% strefie

wszystkich wyników. Dla stali ulepszonej cieplnie 40HM+QT nie uzyskano w żadnym badaniu wartości każdego parametru wyjściowego na poziomie poniżej 30%. Jednakże otrzymano najbardziej optymalne rozwiązania dla wartości wejściowych TiI1Q. Dla stopu aluminium PA6 optymalnym rozwiązaniem dla wartości wejściowych był zestaw TiI1A. Dla mosiądzu MO58, uzyskano jeden zestaw parametrów mieszczących się w zielonej strefie dla TiI9M. Natomiast dla Inconelu 718 optymalnymi parametrami wejściowymi były zestawy: TiII3I oraz TiII6I.

5.1.2. Analiza statystyczna ANOVA

Do analizy wyników badań użyta została DOE tablica ortogonalna L27 metody Taguchi w celu oceny istotności wpływu parametrów wejściowych (n, f_n , KIN) zawartych w tabeli 12 na parametry wyjściowe (CYL_t, STR_t, RON_t, DE; wyniki zamieszczone w tabelach 15 – 19) przy zastosowaniu wieloczynnikowej analizy statystycznej ANOVA.

Istnieje kilka rodzajów modeli regresji. Regresja prosta dotyczy pojedynczego predyktora, równanie (35)

$$Y = b_0 + b_1 X \tag{35}$$

Regresja wieloraka zawiera układ regresji prostej dla dwóch bądź większej liczby predyktorów, równanie (36).

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n \tag{36}$$

Regresja czynnikowa jest to układ w których występują wszystkie możliwe kombinacje iloczynów predyktorów. Równanie (37) przedstawia model regresji czynnikowej dla dwóch zmiennych.

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2 \tag{37}$$

Regresja wielomianowa zawiera główne oraz wyższych rzędów dla predyktorów, ale bez interakcji pomiędzy nimi, równanie (38)

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1^2 + b_4 X_2^2$$
(38)

Regresja powierzchni odpowiedzi jest układem hybrydowym, gdyż zawiera cechy modeli regresji wielomianowej jak i modeli regresji czynnikowej (frakcyjnej). Równanie (39) przedstawia przykład dla dwóch zmiennych.

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1^2 + b_4 X_2^2 + b_5 X_1 X_2$$
(39)

ANOVA pozwala zbudować model predykcyjny wraz ze sprawdzeniem jego istotności. W analizie wykorzystano przedział ufności 95% na 5% poziomie istotności. Do zbudowania modeli zastosowano regresję powierzchni odpowiedzi ze względu na jej hybrydowość. Wyniki analizy przedstawiono w tabelach 20-39. Z poniższych analiz zaobserwowano, że wszystkie modele posiadają wartość istotności mniejszą niż 0,05 co wskazuje na istotność zbudowanych modeli. Każdy

z poniższych modeli charakteryzował się współczynnikiem determinacji większym niż 60% co wskazuje na bardzo dobre dopasowanie eksperymentalnych wyników z przewidywanymi wynikami.

Efekt	SS	DF	MS	F	n	Udział procentowy
Model	1982.9308	9	220.3256	11.3064	0.0000	
Wyraz wolny	675,6187	1	675,6187	34,6705	0,0000	
n	274,8777	1	274,8777	14,1058	0,0016	20,98
n ²	82,1441	1	82,1441	4,2154	0,0558	6,27
f_n	332,6110	1	332,6110	17,0685	0,0007	25,38
f_n^2	139,5230	1	139,5230	7,1598	0,0160	10,65
KIN	0,0252	1	0,0252	0,0013	0,9718	0,00
KIN ²	89,5840	1	89,5840	4,5972	0,0468	6,84
$n \cdot f_n$	375,2008	1	375,2008	19,2540	0,0004	28,63
n·KIN	7,7092	1	7,7092	0,3956	0,5377	0,59
f _n ·KIN	8,7795	1	8,7795	0,4505	0,5111	0,67
Błąd	331,2766	17	19,4869			14,31
Łącznie	2314,2074	26				100,00

Tabela 20. Analiza statystyczna ANOVA dla odchyłki walcowości stali C45

 $R = 0,9256; R^2 = 0,8569$

Z tabeli 20 wynika, że posuw na obrót wpłynął w 50,68% na odchyłkę walcowości. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 41,85%, reszta przypadła układowi kinematycznemu.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	1284,218	9	142,6909	8,4116	0,0001	
Wyraz wolny	305,8640	1	305,8640	18,0306	0,0005	
n	103,7136	1	103,7136	6,1139	0,0243	18,79
n ²	25,2856	1	25,2856	1,4906	0,2388	4,58
\mathbf{f}_{n}	149,3337	1	149,3337	8,8032	0,0086	27,06
f_n^2	61,0141	1	61,0141	3,5968	0,0750	11,06
KIN	18,1472	1	18,1472	1,0698	0,3155	3,29
KIN ²	22,4959	1	22,4959	1,3261	0,2654	4,08
n·f _n	151,9408	1	151,9408	8,9569	0,0082	27,53
n·KIN	4,2474	1	4,2474	0,2504	0,6232	0,77

Tabela 21. Analiza statystyczna ANOVA dla odchyłki prostoliniowości stali C45

Efekt	SS	DF	MS	F	р	Udział procentowy
$f_n \cdot KIN$	15,6834	1	15,6834	0,9245	0,3498	2,84
Błąd	288,3808	17	16,9636			18,34
Łącznie	1572,5985	26				100,00

 $R = 0,9036; R^2 = 0,8166$

Analizując dane zawarte w tabeli 21 stwierdzono, że posuw na obrót miał największy wpływ wynoszący 53,3% na odchyłkę prostoliniowości. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 37,53%, reszta przypadła układowi kinematycznemu.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	24,6731	9	2,7415	9,4084	0,0000	
Wyraz wolny	19,6029	1	19,6029	67,2752	0,0000	
n	7,3694	1	7,3694	25,2909	0,0001	17,61
n ²	5,1616	1	5,1616	17,7140	0,0006	12,34
\mathbf{f}_{n}	12,0041	1	12,0041	41,1969	0,0000	28,69
f_n^2	9,8817	1	9,8817	33,9128	0,0000	23,62
KIN	0,0563	1	0,0563	0,1934	0,6657	0,13
KIN ²	4,8290	1	4,8290	16,5725	0,0008	11,54
$\mathbf{n} \cdot \mathbf{f}_{\mathbf{n}}$	2,3408	1	2,3408	8,0335	0,0114	5,59
n·KIN	0,1862	1	0,1862	0,6389	0,4351	0,45
$f_n \cdot KIN$	0,0105	1	0,0105	0,0361	0,8516	0,03
Błąd	4,9535	17	0,2914			16,72
Łącznie	29,6267	26				100,00

Tabela 22. Analiza statystyczna ANOVA dla odchyłki okrągłości stali C45

 $R = 0,9125; R^2 = 0,8328$

Z tabeli 22 wynika, że posuw na obrót miał największy wpływ wynoszący 55,12% na odchyłkę okrągłości. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 32,97%, reszta przypadła układowi kinematycznemu.

Tabela 23. Analiza statystyczna ANOVA dla błędu średnicy stali C45

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	57,9223	9	6,4358	4,0102	0,0067	
Wyraz wolny	1,5329	1	1,5329	0,9551	0,3421	

Efekt	SS	DF	MS	F	р	Udział procentowy
n	0,1236	1	0,1236	0,0770	0,7848	0,46
n ²	0,0958	1	0,0958	0,0597	0,8099	0,35
\mathbf{f}_{n}	2,6215	1	2,6215	1,6335	0,2184	9,66
f_n^2	1,8891	1	1,8891	1,1771	0,2931	6,96
KIN	7,8855	1	7,8855	4,9135	0,0406	29,05
KIN ²	1,5261	1	1,5261	0,9509	0,3432	5,62
$\mathbf{n} \cdot \mathbf{f}_{\mathbf{n}}$	0,0033	1	0,0033	0,0021	0,9642	0,01
n·KIN	12,8694	1	12,8694	8,0189	0,0115	47,41
$f_n \cdot KIN$	0,1329	1	0,1329	0,0828	0,7770	0,49
Błąd	27,2828	17	1,6049			32,02
Łącznie	85,2052	26				100,00

 $R = 0,8244; R^2 = 0,6798$

Analizując dane zawarte w tabeli 23 stwierdzono, że układ kinematyczny zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 58,62% na błąd średnicy. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 24,52%, reszta przypadła posuwowi na obrót 16,86%

Tabela 24. Analiza statystyczna ANOVA dla odchyłki walcowości stali ulepszonej cieplnie 40HM+QT

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	263,6023	9	29,2891	3,8855	0,0078	
Wyraz wolny	127,4833	1	127,4833	16,9119	0,0007	
n	21,7993	1	21,7993	2,8919	0,1072	8,41
n ²	9,1009	1	9,1009	1,2073	0,2872	3,51
$\mathbf{f}_{\mathbf{n}}$	94,6023	1	94,6023	12,5499	0,0025	36,49
f_n^2	72,5696	1	72,5696	9,6271	0,0065	27,99
KIN	6,4595	1	6,4595	0,8569	0,3676	2,49
KIN ²	28,7400	1	28,7400	3,8126	0,0675	11,09
$n \cdot f_n$	17,7633	1	17,7633	2,3565	0,1432	6,85
n·KIN	0,0150	1	0,0150	0,0020	0,9649	0,01
$f_n \cdot KIN$	8,2136	1	8,2136	1,0896	0,3112	3,17
Błąd	128,1474	17	7,5381			32,71
Łącznie	391,7496	26				100,00

 $R = 0,8202; R^2 = 0,6729$

Z tabeli 24 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 69,49% na odchyłkę walcowości. Prędkość obrotowa wrzeciona oraz układ kinematyczny wpłynęły na wartość badanego parametru prawie po tyle samo odpowiednio 15,35% oraz 15,16%.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	193,7509	9	21,5279	3,5667	0,0116	
Wyraz wolny	74,0995	1	74,0995	12,2768	0,0027	
n	35,3896	1	35,3896	5,8633	0,0269	23,63
n ²	10,9087	1	10,9087	1,8074	0,1965	7,28
$\mathbf{f}_{\mathbf{n}}$	29,6872	1	29,6872	4,9186	0,0405	19,82
f_n^2	13,3007	1	13,3007	2,2037	0,1560	8,88
KIN	7,2959	1	7,2959	1,2088	0,2869	4,87
KIN ²	6,9083	1	6,9083	1,1446	0,2996	4,61
$n \cdot f_n$	39,9675	1	39,9675	6,6218	0,0197	26,69
n·KIN	0,9367	1	0,9367	0,1552	0,6985	0,63
$f_n \cdot KIN$	5,3517	1	5,3517	0,8867	0,3596	3,57
Błąd	102,6076	17	6,0357			34,62
Łącznie	296,3585	26				100,00

Tabela 25. Analiza statystyczna ANOVA dla odchyłki prostoliniowości stali ulepszonej cieplnie 40HM+OT

 $R = 0,8085; R^2 = 0,6538$

Z tabeli 25 wynika, że parametry technologiczne: prędkość obrotowa wrzeciona 44,58% oraz posuw na obrót 43,84% wpłynęły na odchyłkę prostoliniowości otworu. Reszta przypadła układowi kinematycznemu.

Tabela 26. Analiza statystyczna ANOVA dla odchyłki okrągłości stali ulepszonej cieplnie 40HM+OT

Efekt	SS	DF	MS	F	р	Udział procentowy		
Model	3,4204	9	0,3800	4,7519	0,0028			
Wyraz wolny	0,2877	1	0,2877	3,5966	0,0750			
n	0,4167	1	0,4167	5,2105	0,0356	13,18		
n ²	0,2043	1	0,2043	2,5548	0,1284	6,46		
$\mathbf{f}_{\mathbf{n}}$	0,2229	1	0,2229	2,7868	0,1134	7,05		
f_n^2	0,0600	1	0,0600	0,7502	0,3985	1,90		
KIN	0,9129	1	0,9129	11,4148	0,0036	28,88		

Efekt	SS	DF	MS	F	р	Udział procentowy
KIN ²	0,0156	1	0,0156	0,1948	0,6645	0,49
$n \cdot f_n$	0,4408	1	0,4408	5,5120	0,0313	13,95
n·KIN	0,6690	1	0,6690	8,3649	0,0101	21,17
f _n ·KIN	0,2183	1	0,2183	2,7296	0,1169	6,91
Błąd	1,3596	17	0,0800			28,44
Łącznie	4,7800	26				100,00

 $R = 0,8459; R^2 = 0,7156$

Z tabeli 26 wynika, że układ kinematyczny (43,42%) miał największy wpływ na odchyłkę okrągłości otworu. Prędkość obrotowa wrzeciona osiągnęła wpływ wynoszący 37,20%. Reszta przypadła posuwowi na obrót 19,38%.

		-	- <u>F</u>	`		
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	11,8143	9	1,3127	3,4240	0,0139	
Wyraz wolny	6,0791	1	6,0791	15,8563	0,0010	
n	3,0412	1	3,0412	7,9325	0,0119	18,16
n ²	2,0920	1	2,0920	5,4567	0,0320	12,49
\mathbf{f}_{n}	3,8149	1	3,8149	9,9505	0,0058	22,78
f_n^2	2,5785	1	2,5785	6,7256	0,0189	15,40
KIN	0,1021	1	0,1021	0,2662	0,6125	0,61
KIN ²	3,3291	1	3,3291	8,6835	0,0090	19,88
$n \cdot f_n$	1,6875	1	1,6875	4,4016	0,0512	10,08
n·KIN	0,0865	1	0,0865	0,2258	0,6407	0,52
$f_n \cdot KIN$	0,0130	1	0,0130	0,0338	0,8562	0,08
Błąd	6,5176	17	0,3834			35,55
Łącznie	18,3319	26				100,00
D 0 0000 D	2 0 1 1 1					

Tabela 27. Analiza statystyczna ANOVA dla błędu średnicy stali ulepszonej cieplnie 40HM+OT

 $R = 0,8028; R^2 = 0,6445$

Analizując dane zawarte w tabeli 27 stwierdzono, że wpływ poszczególnych parametrów wejściowych na błąd średnicy otworu był następujący: posuw na obrót 43,25%, prędkość obrotowa wrzeciona 35,95% oraz układ kinematyczny 20,79%.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	1197,8067	9	133,0896	7,0541	0,0003	
Wyraz wolny	304,1953	1	304,1953	16,1231	0,0009	
n	242,4367	1	242,4367	12,8497	0,0023	22,07
n ²	274,1171	1	274,1171	14,5289	0,0014	24,95
$\mathbf{f}_{\mathbf{n}}$	255,8686	1	255,8686	13,5617	0,0018	23,29
f_n^2	265,3350	1	265,3350	14,0634	0,0016	24,15
KIN	8,3119	1	8,3119	0,4406	0,5158	0,76
KIN ²	14,7133	1	14,7133	0,7798	0,3895	1,34
$\mathbf{n} \cdot \mathbf{f}_{\mathbf{n}}$	12,2008	1	12,2008	0,6467	0,4324	1,11
n·KIN	1,5686	1	1,5686	0,0831	0,7766	0,14
$f_n \cdot KIN$	24,1237	1	24,1237	1,2786	0,2739	2,20
Błąd	320,7400	17	18,8671			21,12
Łącznie	1518,5467	26				100,00
D 0 0001 D	2 0 7000					

Tabela 28. Analiza statystyczna ANOVA dla odchyłki walcowości stopu aluminium PA6

 $R = 0,8881; R^2 = 0,7888$

Z tabeli 28 wynika, że parametry technologiczne wpłynęły w 96,73% na odchyłkę walcowości otworu (posuw na obrót 49,09%, prędkość obrotowa wrzeciona 47,64%). Bardzo mały wpływ wynoszący 3,25% miał układ kinematyczny.

Tabela 29. Analiza statystyczna ANOVA dla odchyłki prostoliniowości stopu aluminium PA6

				1110		
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	1001,4231	9	111,2692	4,8885	0,0024	
Wyraz wolny	62,4926	1	62,4926	2,7456	0,1159	
n	5,0843	1	5,0843	0,2234	0,6425	0,93
n ²	22,7492	1	22,7492	0,9995	0,3315	4,17
$\mathbf{f}_{\mathbf{n}}$	161,1526	1	161,1526	7,0801	0,0165	29,53
f_n^2	229,4017	1	229,4017	10,0785	0,0055	42,03
KIN	0,4898	1	0,4898	0,0215	0,8851	0,09
KIN ²	102,2620	1	102,2620	4,4928	0,0491	18,74
$n \cdot f_n$	13,2300	1	13,2300	0,5812	0,4563	2,42
n·KIN	2,8578	1	2,8578	0,1256	0,7274	0,52
f _n ·KIN	8,5773	1	8,5773	0,3768	0,5474	1,57

Efekt	SS	DF	MS	F	р	Udział procentowy
Błąd	386,9435	17	22,7614			27,87
Łącznie	1388,3667	26				100,00

 $R = 0,8493; R^2 = 0,7213$

Z tabeli 29 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Spowodował on wpływ wynoszący 73,55% na odchyłkę prostoliniowości otworu. Kolejnym wpływowym parametrem wejściowym był układ kinematyczny 19,87%, reszta przypadła prędkości obrotowej wrzeciona.

Tabela 30. Analiza statystyczna ANOVA dla odchyłki okrągłości stopu aluminium PA6

			1110			r
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	241,6086	9	26,8454	8,1059	0,0001	
Wyraz wolny	133,0856	1	133,0856	40,1850	0,0000	
n	60,9210	1	60,9210	18,3950	0,0005	17,45
n ²	31,3793	1	31,3793	9,4749	0,0068	8,99
\mathbf{f}_{n}	98,6792	1	98,6792	29,7960	0,0000	28,27
f_n^2	63,8091	1	63,8091	19,2671	0,0004	18,28
KIN	16,1376	1	16,1376	4,8727	0,0413	4,62
KIN ²	15,8030	1	15,8030	4,7717	0,0432	4,53
$n \cdot f_n$	45,6300	1	45,6300	13,7779	0,0017	13,07
n·KIN	10,0853	1	10,0853	3,0452	0,0990	2,89
$f_n \cdot KIN$	6,6034	1	6,6034	1,9939	0,1760	1,89
Błąd	56,3010	17	3,3118			18,90
Łącznie	297,9096	26				100,00

 $R = 0,9006; R^2 = 0,8110$

Z tabeli 30 wynika, że również posuw na obrót zdominował pozostałe parametry wejściowe. Spowodował on wpływ wynoszący 54,03% na odchyłkę okrągłości otworu. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 34,42%, reszta przypadła posuwowi na obrót 11,55%.

Tabela 31. Analiza statystyczna ANOVA dla błędu średnicy stopu aluminium PA6

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	2058,5104	9	228,7234	13,3858	0,0000	
Wyraz wolny	323,3141	1	323,3141	18,9216	0,0004	
n	305,8570	1	305,8570	17,9000	0,0006	25,29

Efekt	SS	DF	MS	F	р	Udział procentowy
n^2	236,3222	1	236,3222	13,8305	0,0017	19,54
\mathbf{f}_{n}	228,5186	1	228,5186	13,3738	0,0020	18,89
f_n^2	201,0674	1	201,0674	11,7673	0,0032	16,62
KIN	0,1563	1	0,1563	0,0091	0,9249	0,01
KIN ²	120,7119	1	120,7119	7,0645	0,0166	9,98
$\mathbf{n} \cdot \mathbf{f}_{\mathbf{n}}$	110,4133	1	110,4133	6,4618	0,0211	9,13
n·KIN	0,8328	1	0,8328	0,0487	0,8279	0,07
$f_n \cdot KIN$	5,5642	1	5,5642	0,3256	0,5757	0,46
Błąd	290,4792	17	17,0870			12,37
Łącznie	2348,9896	26				100,00

 $R = 0,9361; R^2 = 0,8763$

Analizując dane zawarte w tabeli 31 stwierdzono, że parametry technologiczne zdominowały wpływ na błąd średnicy, odpowiednio prędkość obrotowa wrzeciona 49,43%, posuw na obrót 40,31%, reszta przypadła układowi kinematycznemu 10,26%.

Tabela 32. Analiza statystyczna ANOVA dla odchyłki walcowości mosiądzu MO58

	1		10000	, I	1	
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	3647,6190	9	405,2910	4,4311	0,0041	
Wyraz wolny	634,5816	1	634,5816	6,9380	0,0174	
n	503,2850	1	503,2850	5,5025	0,0314	15,06
n^2	87,8464	1	87,8464	0,9604	0,3408	2,63
\mathbf{f}_{n}	495,7528	1	495,7528	5,4202	0,0325	14,84
f_n^2	102,7824	1	102,7824	1,1237	0,3039	3,08
KIN	1,4278	1	1,4278	0,0156	0,9020	0,04
KIN ²	557,4176	1	557,4176	6,0943	0,0245	16,69
$n \cdot f_n$	1580,1075	1	1580,1075	17,2756	0,0007	47,30
n·KIN	1,5799	1	1,5799	0,0173	0,8970	0,05
f _n ·KIN	10,5855	1	10,5855	0,1157	0,7379	0,32
Błąd	1554,8995	17	91,4647			29,89
Łącznie	5202,5185	26				100,00

 $R = 0,8373; R^2 = 0,7011$

Z tabeli 32 wynika, że posuw na obrót osiągnął 41,72% wpływ na walcowość otworu. Następnie prawie z takim samym wpływem była prędkość obrotowa wrzeciona 41,37%, reszta przypadła układowi kinematycznemu 16,91%.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	2585,7630	9	287,3070	7,7271	0,0002	
Wyraz wolny	86,5155	1	86,5155	2,3268	0,1455	
n	127,0940	1	127,0940	3,4182	0,0819	6,73
n ²	306,2079	1	306,2079	8,2355	0,0106	16,21
\mathbf{f}_{n}	56,3510	1	56,3510	1,5156	0,2351	2,98
f_n^2	83,1296	1	83,1296	2,2358	0,1532	4,40
KIN	41,7632	1	41,7632	1,1232	0,3041	2,21
KIN ²	1026,3009	1	1026,3009	27,6024	0,0001	54,34
$n \cdot f_n$	82,6875	1	82,6875	2,2239	0,1542	4,38
n·KIN	16,2026	1	16,2026	0,4358	0,5180	0,86
$f_n \cdot KIN$	148,9559	1	148,9559	4,0062	0,0616	7,89
Błąd	632,0866	17	37,1816			19,64
Łącznie	3217,8496	26				100,00

Tabela 33. Analiza statystyczna ANOVA dla odchyłki prostoliniowości mosiądzu MO58

 $R = 0,8964; R^2 = 0,8036$

Z tabeli 33 wynika, że układ kinematyczny zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 60,92% na odchyłkę prostoliniowości otworu. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 25,56%, reszta przypadła posuwowi na obrót 13,52%.

Tabela 34. Analiza statystyczna ANOVA dla odchyłki okrągłości mosiądzu MO58

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	93,1434	9	10,3493	4,0471	0,0064	
Wyraz wolny	0,5042	1	0,5042	0,1972	0,6626	
n	21,1196	1	21,1196	8,2588	0,0105	18,89
n ²	38,7855	1	38,7855	15,1670	0,0012	34,68
$\mathbf{f}_{\mathbf{n}}$	13,6650	1	13,6650	5,3437	0,0336	12,22
f_n^2	10,2269	1	10,2269	3,9992	0,0618	9,14
KIN	3,7688	1	3,7688	1,4738	0,2413	3,37
KIN ²	11,6564	1	11,6564	4,5582	0,0476	10,42
$n \cdot f_n$	6,7500	1	6,7500	2,6396	0,1226	6,04
n·KIN	0,0234	1	0,0234	0,0092	0,9248	0,02
f _n ·KIN	5,8370	1	5,8370	2,2825	0,1492	5,22

Efekt	SS	DF	MS	F	р	Udział procentowy
Błąd	43,4729	17	2,5572			31,82
Łącznie	136,6163	26				100,00

 $R = 0,8257; R^2 = 0,6818$

Analizując dane zawarte w tabeli 34 stwierdzono, że najbardziej wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 56,6%, następnie posuw na obrót 26,99% oraz układ kinematyczny 16,41% na odchyłkę okrągłości otworu.

Tabela 35. Analiza statystyczna ANOVA dla błędu średnicy mosiądzu MO58

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	1807,8345	9	200,8705	5,4514	0,0014	74,27
Wyraz wolny	63,0649	1	63,0649	1,7115	0,2082	
n	10,7778	1	10,7778	0,2925	0,5956	0,54
n ²	160,7500	1	160,7500	4,3625	0,0521	8,08
\mathbf{f}_{n}	369,5070	1	369,5070	10,0279	0,0056	18,57
f_n^2	184,8150	1	184,8150	5,0156	0,0388	9,29
KIN	216,5273	1	216,5273	5,8763	0,0268	10,88
KIN ²	435,6873	1	435,6873	11,8240	0,0031	21,89
$\mathbf{n} \cdot \mathbf{f}_{\mathbf{n}}$	441,6533	1	441,6533	11,9859	0,0030	22,19
n·KIN	105,8104	1	105,8104	2,8716	0,1084	5,32
$f_n \cdot KIN$	64,6364	1	64,6364	1,7541	0,2029	3,25
Błąd	626,4121	17	36,8478			25,73
Łącznie	2434,2467	26				100,00

 $R = 0,8618; R^2 = 0,7427$

Analizując dane zawarte w tabeli 35 stwierdzono, że posuw na obrót uzyskał 40,57% wpływ na błąd średnicy otworu. Kolejnym parametrem był układ kinematyczny 37,05%, a reszta przypadła prędkości obrotowej wrzeciona 22,38%.

Tabela 36. Analiza statystyczna ANOVA dla odchyłki walcowości Inconelu 718

	2					
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	5340,7055	9	593,4117	4,5815	0,0034	
Wyraz wolny	3,5449	1	3,5449	0,0274	0,8706	
n	23,8408	1	23,8408	0,1841	0,6733	5,22
n ²	22,1095	1	22,1095	0,1707	0,6847	4,84
f _n	6,537	1	6,537	0,0505	0,8249	1,43

Efekt	SS	DF	MS	F	р	Udział procentowy
f_n^2	59,3252	1	59,3252	0,458	0,5076	12,99
KIN	17,6398	1	17,6398	0,1362	0,7167	3,86
KIN ²	241,773	1	241,773	1,8667	0,1897	52,94
$\mathbf{n} \cdot \mathbf{f}_{\mathbf{n}}$	7,1696	1	7,1696	0,0554	0,8168	1,57
n·KIN	64,5272	1	64,5272	0,4982	0,4899	14,13
$f_n \cdot KIN$	13,7839	1	13,7839	0,1064	0,7482	3,02
Błąd	2201,862	17	129,5213			29,19
Łącznie	7542,568	26				100

 $R = 0,8415; R^2 = 0,7081$

Z tabeli 36 wynika, że układ kinematyczny zdominował pozostałe parametry wejściowe. Wpłynął on w 65,37% na odchyłkę walcowości otworu. Parametry technologiczne uzyskały prawie taki sam wpływ odpowiednio prędkość obrotowa wrzeciona 17,91% oraz posuw na obrót 16,72%.

Tabela 37. Analiza statystyczna ANOVA dla odchyłki prostoliniowości Inconelu 718

			110			
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	2039,678	9	226,6308	4,9514	0,0022	
Wyraz wolny	17,3389	1	17,3389	0,3788	0,5464	
n	27,9898	1	27,9898	0,6115	0,445	1,77
n ²	297,9125	1	297,9125	6,5089	0,0207	18,84
$\mathbf{f}_{\mathbf{n}}$	220,5234	1	220,5234	4,818	0,0423	13,95
f_n^2	31,8029	1	31,8029	0,6948	0,4161	2,01
KIN	126,7622	1	126,7622	2,7695	0,1144	8,02
KIN ²	11,6122	1	11,6122	0,2537	0,6209	0,73
$\mathbf{n} \cdot \mathbf{f}_{\mathbf{n}}$	83,562	1	83,562	1,8257	0,1943	5,28
n·KIN	3,0603	1	3,0603	0,0669	0,7991	0,19
$f_n \cdot KIN$	778,0949	17	45,7703			49,21
Błąd	778,0949	17	45,7702			27,61
Łącznie	2817,773	26				100

 $R = 0,8508; R^2 = 0,7239$

Analizując dane zawarte w tabeli 37 stwierdzono, że każdy parametr badany miał dość duży wpływ na odchyłkę prostoliniowości otworu. Posuw na obrót 43,2%, układ kinematyczny 33,45% oraz prędkość obrotowa wrzeciona 23,35%.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	15,6865	9	1,7429	9,5558	0,0000	
Wyraz wolny	4,1656	1	4,1656	22,8382	0,0002	
n	2,8668	1	2,8668	15,7176	0,0010	14,22
n ²	3,7282	1	3,7282	20,4401	0,0003	18,50
\mathbf{f}_{n}	3,7062	1	3,7062	20,3194	0,0003	18,39
f_n^2	4,6699	1	4,6699	25,6030	0,0001	23,17
KIN	0,6661	1	0,6661	3,6521	0,0730	3,30
KIN ²	0,0043	1	0,0043	0,0236	0,8797	0,02
$n \cdot f_n$	0,0971	1	0,0971	0,5325	0,4755	0,48
n·KIN	3,9205	1	3,9205	21,4942	0,0002	19,45
$f_n \cdot KIN$	0,4987	1	0,4987	2,7341	0,1166	2,47
Błąd	3,1007	17	0,1824			16,50
Łącznie	18,787226	26				100

Tabela 38. Analiza statystyczna ANOVA dla odchyłki okrągłości Inconelu 718

 $R = 0.9138; R^2 = 0.8350$

Z tabeli 38 wynika, że parametry technologiczne spowodowały podobny wpływ na odchyłkę okrągłości otworu, odpowiednio posuw na obrót 43,03% oraz prędkość obrotowa wrzeciona 42,68%, reszta przypadła układowi kinematycznemu 14,29%.

					iu sieum	
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	7488,8109	9	832,0901	14,4959	0,0000	
Wyraz wolny	79,6530	1	79,6530	1,3876	0,2550	
n	144,4206	1	144,4206	2,5160	0,1311	4,78
n ²	96,1904	1	96,1904	1,6757	0,2128	3,19
$\mathbf{f}_{\mathbf{n}}$	761,4815	1	761,4815	13,2658	0,0020	25,22
f_n^2	1356,0067	1	1356,0067	23,6230	0,0002	44,91
KIN	70,2335	1	70,2335	1,2235	0,2841	2,33
KIN ²	117,8613	1	117,8613	2,0533	0,1700	3,90
$n \cdot f_n$	89,5009	1	89,5009	1,5592	0,2287	2,96
n·KIN	12,5481	1	12,5481	0,2186	0,6461	0,42
f _n KIN	371,4573	1	371,4573	6,4712	0,0210	12,30
Błąd	975,8315	17	57,4019			11,53
Łącznie	8464,6424	26				100,00

Tabela 39. Analiza statystyczna ANOVA dla błedu średnicy Inconelu 718

 $R = 0,9406; R^2 = 0,8847$

Z tabeli 39 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Spowodował on wpływ wynoszący 77,75% na błąd średnicy otworu. Kolejnym wpływowym parametrem wejściowym był układ kinematyczny 12,59%, reszta przypadła prędkości obrotowej wrzeciona 9,66%.

Po przeprowadzeniu obszernych analiz statystycznych przedstawionych w tabelach 20-39 stwierdzono, że zbudowane modele matematyczne są istotne. Wartości p są mniejsze niż 0,05 co wskazuje na istotność tych modeli.

Wykorzystując równanie hybrydowe (39) zbudowano modele matematyczne dla: odchyłki walcowości, odchyłki prostoliniowości, odchyłki okrągłości oraz błędu średnicy dla każdego badanego materiału. Równania 40-43 dotyczą stali C45, równania 44-47 dotyczą stali ulepszonej cieplnie 40HM+QT, równania 48-51 dotyczą stopu aluminium PA6, równania 52-55 dotyczą stopu mosiądzu MO58, natomiast równania 56-59 dotyczą Inconelu 718.

$$CYL_{C45} = 510,04 - 9,24 \cdot 10^{-2} \cdot n + 5,84 \cdot 10^{-6} \cdot n^{2} + -4662 \cdot f_{n} + 12055,55 \cdot f_{n}^{2} - 9,29 \cdot 10^{-5} \cdot KIN + -2,26 \cdot 10^{-7} \cdot KIN^{2} + 0,35 \cdot n \cdot f_{n} - 2,61 \cdot 10^{-7} \cdot n \cdot KIN + +1,06 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(40)$$

$$STR_{C45} = 343,17 - 5,68 \cdot 10^{-2} \cdot n + 3,24 \cdot 10^{-6} \cdot n^{2} + -3123,80 \cdot f_{n} + 7972,22 \cdot f_{n}^{2} - 2,49 \cdot 10^{-3} \cdot KIN + -1,13 \cdot 10^{-7} \cdot KIN^{2} + 2,23 \cdot 10^{-1} \cdot n \cdot f_{n} + 1,94 \cdot 10^{-7} \cdot n \cdot KIN + -1,41 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(41)$$

$$RON_{C45} = 86,87 - 1,51 \cdot 10^{-2} \cdot n + 1,46 \cdot 10^{-6} \cdot n^{2} + -885,66 \cdot f_{n} + 3208,33 \cdot f_{n}^{2} - 1,39 \cdot 10^{-4} \cdot KIN + +5,25 \cdot 10^{-8} \cdot KIN^{2} + 2,77 \cdot 10^{-2} \cdot n \cdot f_{n} + 4,06 \cdot 10^{-8} \cdot n \cdot KIN + +3,67 \cdot 10^{-4} \cdot f_{n} \cdot KIN$$

$$(42)$$

$$DE_{C45} = 24,29 + 1,96 \cdot 10^{-3} \cdot n - 1,99 \cdot 10^{-7} \cdot n^{2} + -413,88 \cdot f_{n} + 1402,77 \cdot f_{n}^{2} - 1,64 \cdot 10^{-3} \cdot KIN + -2,95 \cdot 10^{-8} \cdot KIN^{2} + 1,04 \cdot 10^{-2} \cdot n \cdot f_{n} + 3,37 \cdot 10^{-7} \cdot n \cdot KIN + +1,3 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$

$$(43)$$

$$CYL_{40HM} = 221,55 - 2,6 \cdot 10^{-2} \cdot n + 1,94 \cdot 10^{-6} \cdot n^{2} + -2486,31 \cdot f_{n} + 8694,44 \cdot f_{n}^{2} - 1,48 \cdot 10^{-3} \cdot KIN + -1,28 \cdot 10^{-7} \cdot KIN^{2} + 7,64 \cdot 10^{-2} \cdot n \cdot f_{n} + 1,15 \cdot 10^{-8} \cdot n \cdot KIN + +1,02 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(44)$$

$$STR_{40HM} = 168,91 - 3,31 \cdot 10^{-2} \cdot n + 2,12 \cdot 10^{-6} \cdot n^{2} + -1392,80 \cdot f_{n} + 3722,22 \cdot f_{n}^{2} - 1,58 \cdot 10^{-3} \cdot KIN + -6,28 \cdot 10^{-8} \cdot KIN^{2} + 1,14 \cdot 10^{-1} \cdot n \cdot f_{n} + 9,11 \cdot 10^{-8} \cdot n \cdot KIN + +8,28 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$

$$(45)$$

$$RON_{40HM} = -10,52 + 3,6 \cdot 10^{-3} \cdot n - 2,91 \cdot 10^{-7} \cdot n^{2} + +120,68 \cdot f_{n} - 250 \cdot f_{n}^{2} - 5,59 \cdot 10^{-4} \cdot KIN + 2,98 \cdot 10^{-9} \cdot KIN^{2} + -1,2 \cdot 10^{-2} \cdot n \cdot f_{n} + 7,7 \cdot 10^{-8} \cdot n \cdot KIN + 1,67 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$

$$(46)$$

$$DE_{40HM} = 48,38 - 9,72 \cdot 10^{-3} \cdot n + 9,32 \cdot 10^{-7} \cdot n^{2} + -499,28 \cdot f_{n} + 1638,88 \cdot f_{n}^{2} - 1,87 \cdot 10^{-4} \cdot KIN + -4,36 \cdot 10^{-8} \cdot KIN^{2} + 2,35 \cdot 10^{-2} \cdot n \cdot f_{n} + 2,77 \cdot 10^{-8} \cdot n \cdot KIN + +4,07 \cdot 10^{-4} \cdot f_{n} \cdot KIN$$

$$(47)$$

$$CYL_{PA6} = -324,24 + 8,68 \cdot 10^{-2} \cdot n - 1,06 \cdot 10^{-5} \cdot n^{2} + +4088,96 \cdot f_{n} - 16625 \cdot f_{n}^{2} - 1,68 \cdot 10^{-3} \cdot KIN + -9,17 \cdot 10^{-8} \cdot KIN^{2} - 6,33 \cdot 10^{-2} \cdot n \cdot f_{n} - 1,17 \cdot 10^{-7} \cdot n \cdot KIN + +1,75 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(48)$$

$$STR_{PA6} = -155,12 + 1,25 \cdot 10^{-2} \cdot n - 3,07 \cdot 10^{-6} \cdot n^{2} + 3245,06 \cdot f_{n} - 15458,33 \cdot f_{n}^{2} - 4,1 \cdot 10^{-4} \cdot KIN + -2,41 \cdot 10^{-7} \cdot KIN^{2} + 6,59 \cdot 10^{-2} \cdot n \cdot f_{n} - 1,59 \cdot 10^{-7} \cdot n \cdot KIN + 1,04 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(49)$$

$$\begin{aligned} RON_{PA6} &= -226,37 + 4,35 \cdot 10^{-2} \cdot n - 3,61 \cdot 10^{-6} \cdot n^2 + \\ &+ 2539,32 \cdot f_n - 8152,77 \cdot f_n^2 + 2,35 \cdot 10^{-3} \cdot KIN + \\ &- 9,51 \cdot 10^{-8} \cdot KIN^2 - 1,22 \cdot 10^{-1} \cdot n \cdot f_n - 2,99 \cdot 10^{-7} \cdot n \cdot KIN + \\ &- 9,19 \cdot 10^{-3} \cdot f_n \cdot KIN \end{aligned}$$
(50)

$$DE_{PA6} = -352,83 + 9,75 \cdot 10^{-2} \cdot n - 9,9 \cdot 10^{-6} \cdot n^{2} + +3864,25 \cdot f_{n} - 14472,22 \cdot f_{n}^{2} - 2,31 \cdot 10^{-4} \cdot KIN + -2,62 \cdot 10^{-7} \cdot KIN^{2} - 1,9 \cdot 10^{-1} \cdot n \cdot f_{n} - 8,59 \cdot 10^{-8} \cdot n \cdot KIN + +8,44 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$
(51)

$$CYL_{M058} = -494,31 + 1,25 \cdot 10^{-1} \cdot n - 6,04 \cdot 10^{-6} \cdot n^{2} + +5691,64 \cdot f_{n} - 10347,22 \cdot f_{n}^{2} + 7 \cdot 10^{-4} \cdot KIN + +5,64 \cdot 10^{-7} \cdot KIN^{2} - 7,2 \cdot 10^{-1} \cdot n \cdot f_{n} + 1,18 \cdot 10^{-7} \cdot n \cdot KIN + -1,16 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$
(52)
$$STR_{M058} = -182,51 + 6,28 \cdot 10^{-2} \cdot n - 1,12 \cdot 10^{-5} \cdot n^{2} + +1918,91 \cdot f_{n} - 9305,55 \cdot f_{n}^{2} - 3,78 \cdot 10^{-3} \cdot KIN + +7,66 \cdot 10^{-7} \cdot KIN^{2} + 1,64 \cdot 10^{-1} \cdot n \cdot f_{n} - 3,79 \cdot 10^{-7} \cdot n \cdot KIN + +4,36 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$
(53)

$$RON_{M058} = 13,93 + 2,56 \cdot 10^{-2} \cdot n - 4,01 \cdot 10^{-6} \cdot n^{2} + -944,95 \cdot f_{n} + 3263,88 \cdot f_{n}^{2} + 1,13 \cdot 10^{-3} \cdot KIN + -8,16 \cdot 10^{-8} \cdot KIN^{2} + 4,71 \cdot 10^{-2} \cdot n \cdot f_{n} - 1,44 \cdot 10^{-8} \cdot n \cdot KIN + -8,64 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$
(54)

$$DE_{M058} = -155,82 - 1,83 \cdot 10^{-2} \cdot n + 8,17 \cdot 10^{-6} \cdot n^{2} + +4913,78 \cdot f_{n} - 13875 \cdot f_{n}^{2} - 8,62 \cdot 10^{-3} \cdot KIN + -4,99 \cdot 10^{-7} \cdot KIN^{2} - 3,81 \cdot 10^{-1} \cdot n \cdot f_{n} + 9,69 \cdot 10^{-7} \cdot n \cdot KIN + +2,87 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$
(55)

$$CYL_{I718} = -29,94 - 1,33 \cdot 10^{-1} \cdot n - 7,60 \cdot 10^{-5} \cdot n^{2} + -739,39 \cdot f_{n} + 13975,31 \cdot f_{n}^{2} + 1,12 \cdot 10^{-2} \cdot KIN + +9,27 \cdot 10^{-6} \cdot KIN^{2} - 3,24 \cdot 10^{-1} \cdot n \cdot f_{n} - 1,89 \cdot 10^{-5} \cdot n \cdot KIN + +8,84 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$
(56)

$$STR_{I718} = -137,65 - 1,13 \cdot 10^{-1} \cdot n + 8,55 \cdot 10^{-5} \cdot n^{2} + +4991,51 \cdot f_{n} - 26944,44 \cdot f_{n}^{2} + 1,51 \cdot 10^{-2} \cdot KIN + 6,71 \cdot 10^{-6} \cdot KIN^{2} - 4,12 \cdot 10^{-1} \cdot n \cdot f_{n} + -2,16 \cdot 10^{-5} \cdot n \cdot KIN + 4,16 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$
(57)

$$RON_{I718} = -32,45 + 4,62 \cdot 10^{-2} \cdot n - 3,12 \cdot 10^{-5} \cdot n^{2} + +556,74 \cdot f_{n} - 3920,98 \cdot f_{n}^{2} - 2,19 \cdot 10^{-3} \cdot KIN + +3,91 \cdot 10^{-8} \cdot KIN^{2} + 3,77 \cdot 10^{-2} \cdot n \cdot f_{n} + 4,68 \cdot 10^{-6} \cdot n \cdot KIN + -1,68 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$
(58)

$$DE_{I718} = 141,92 + 3,28 \cdot 10^{-1} \cdot n - 1,58 \cdot 10^{-4} \cdot n^{2} + -7980,27 \cdot f_{n} + 66814,81 \cdot f_{n}^{2} - 2,25 \cdot 10^{-2} \cdot KIN + +6,47 \cdot 10^{-6} \cdot KIN^{2} - 1,14 \cdot n \cdot f_{n} - 8,37 \cdot 10^{-6} \cdot n \cdot KIN + +4,59 \cdot 10^{-1} \cdot f_{n} \cdot KIN$$
(59)

gdzie: n – wartość prędkości obrotowej wrzeciona, f_n – wartość posuwu na obrót, KIN – układ kinematyczny, $n \cdot f_n$ – interakcja wartości prędkości obrotowej wrzeciona z wartością posuwu na obrót, $n \cdot KIN$ – interakcja wartości prędkości obrotowej wrzeciona z układem kinematycznym, $f_n \cdot KIN$ – interakcja wartości posuwu na obrót z układem kinematycznym.

Rys. 37. Zestawione wartości eksperymentalne z wartościami predykcyjnymi błędów kształtu oraz dokładności wykonania otworów dla stali C45

Rys. 38. Zestawione wartości eksperymentalne z wartościami predykcyjnymi błędów kształtu oraz dokładności wykonania otworów dla stali ulepszonej cieplnie 40HM+QT

Rys. 39. Zestawione wartości eksperymentalne z wartościami predykcyjnymi błędów kształtu oraz dokładności wykonania otworów dla stopu aluminium PA6

Rys. 40. Zestawione wartości eksperymentalne z wartościami predykcyjnymi błędów kształtu oraz dokładności wykonania otworów dla stopu mosiądzu MO58

Rys. 41. Zestawione wartości eksperymentalne z wartościami predykcyjnymi błędów kształtu oraz dokładności wykonania otworów dla Inconelu 718

Wartości przewidywane i eksperymentalne dla odchyłki walcowości, odchyłki prostoliniowości, odchyłki okrągłości oraz błędu średnicy otworu zostały przedstawione na rys. 37-41. Zauważono, że wszystkie wartości są w bardzo dobrej korelacji ze zbudowanymi modelami.

W tabelach 40-44 zestawiono porównanie wartości eksperymentalnych z przewidywanymi. Wartości te wskazują na dokładność modeli ze względu na zbliżone wartości. Dla stali C45 wartości błędów względnych były następujące: dla CYL_t 12%, dla STR_t 15%, dla RON_t 7% oraz DE 87%. Dla stali ulepszonej cieplnie 40HM+QT wartości błędów względnych były następujące: dla CYL_t 12%, dla STR_t 15%, dla RON_t 7% oraz DE 87%. Dla stali ulepszonej cieplnie 40HM+QT wartości błędów względnych były następujące: dla CYL_t 12%, dla STR_t 12%, dla STR_t 0%. Dla stopu aluminium PA6 wartości błędów względnych były następujące: dla CYL_t 6%, dla RON_t 9% oraz DE 9%. Dla stopu mosiądzu MO58 wartości błędów względnych były następujące: dla CYL_t 6%, dla STR_t 5%, dla RON_t 16% oraz DE 3%. Dla Inconelu 718 wartości błędów względnych były następujące: dla CYL_t 26%, dla STR_t 24%, dla RON_t 9% oraz DE 53%.

	Eksp	erymenta	alne wyniki		Przewidywane wyniki			
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm
Til1S	17,5	16,7	7,6	-0,5	15,6	13,6	7,1	-0,6
Till1S	14,4	10,9	6,1	-1,0	14,2	9,6	6,1	-2,0
Till1S	17,4	9,2	5,5	-2,0	20,1	14,2	5,4	-0,6
Til2S	11,4	14,0	5,1	-1,7	11,6	11,1	5,3	-1,9
Till2S	9,5	10,4	5,2	-1,4	8,8	9,1	4,7	-0,9
Till12S	10,7	8,5	3,4	-0,4	13,8	11,9	4,2	-0,9
Til3S	12,1	10,2	5,8	-3,0	14,5	12,9	5,4	-3,0
Till3S	11,8	14,3	5,1	-1,7	10,9	12,2	5,2	-0,5
Tilli3S	19,7	14,1	4,3	-0,3	15,0	13,7	4,8	-1,5
Til4S	11,4	10,6	4,4	-0,4	11,6	11,9	5,5	0,2
Till4S	11,4	11,5	4,7	-0,7	12,2	10,6	4,5	-1,0
Tilli4S	16,5	12,9	3,7	0,6	17,1	13,8	3,8	0,2
Til5S	16,3	14,9	4,5	-1,3	13,4	13,2	4,1	-1,1
Till5S	19,6	15,6	3,1	0,5	12,3	13,4	3,5	0,1
Tilli5S	16,8	14,5	3,3	0,0	16,4	15,1	3,0	0,0
Til6S	23,8	20,2	4,8	-2,4	22,0	18,8	4,7	-2,2
Till6S	13,5	17,2	4,4	-0,8	19,8	19,9	4,5	0,5
Tilli6S	18,6	20,0	4,6	0,6	23,2	20,5	4,0	-0,6
Til7S	17,5	16,8	7,0	3,8	17,2	16,6	6,4	2,0
Till7S	20,4	18,4	5,2	1,3	19,9	18,0	5,5	1,1
Till17S	25,0	21,2	4,7	0,4	23,7	19,9	4,7	2,2
Til8S	21,6	17,8	5,2	0,6	24,8	21,7	5,4	0,8
Till8S	22,1	20,1	5,3	1,3	25,4	24,2	5,0	2,2
Till18S	27,2	28,7	4,4	2,7	28,7	24,7	4,4	2,0
Til9S	35,9	26,8	5,8	-2,4	39,2	31,1	6,5	-0,2
Till9S	36,6	29,8	6,0	3,0	38,3	34,0	6,3	2,6
Tilli9S	51,8	44,3	6,4	3,6	41,0	33,7	5,9	1,5

Tabela 40. Wyniki badań wartości eksperymentalnych oraz przewidywanych dla stali C45

	Eksp	erymenta	alne wyniki		Przewidywane wyniki			
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm
Til1Q	9,7	10,4	4,1	0,0	12,0	12,2	4,2	0,2
Till1Q	12,7	11,8	3,9	0,8	12,0	12,1	3,8	0,2
Tilll1 Q	12,7	11,8	3,6	0,5	14,9	13,6	4,0	1,2
Til2Q	14,4	15,7	4,7	-1,0	11,6	11,2	4,5	-1,0
Till2Q	12,1	12,5	4,5	-0,7	11,6	11,7	4,6	-0,8
Tilll2 Q	15,6	14,3	5,0	-0,5	13,6	12,4	4,5	-0,2
Til3Q	16,3	11,6	4,2	-0,7	13,4	12,8	4,4	-1,0
Till3Q	13,2	14,3	4,7	-1,3	13,5	13,7	4,9	-0,7
Tilli3 Q	10,7	11,2	4,8	0,2	14,7	13,9	4,6	-0,4
Til4Q	7,5	7,4	4,4	-0,6	8,3	9,0	4,1	-0,7
Till4Q	9,8	9,6	4,4	-0,7	10,2	10,5	4,0	-0,6
Tilll4 Q	14,5	14,6	3,7	0,5	12,2	11,2	4,0	0,4
Til5Q	9,8	9,5	4,1	-1,1	9,2	9,9	4,2	-1,4
Till5Q	12,7	12,0	4,6	-0,9	10,9	11,7	4,6	-1,2
Till15 Q	12,2	11,0	4,2	-0,4	12,0	11,8	4,3	-0,6
Til6Q	10,3	12,7	3,8	-1,2	12,4	13,5	3,9	-1,1
Till6Q	12,9	13,6	4,6	-1,7	13,8	15,4	4,7	-0,7
Tilli6 Q	13,6	17,6	4,3	-0,3	14,4	15,1	4,3	-0,5
Til7Q	12,5	10,6	3,9	0,1	11,5	8,7	3,8	-0,2
Till7Q	14,8	13,2	4,0	-0,4	15,4	11,8	4,0	0,0
Tilll7 Q	18,6	11,3	3,9	1,1	16,3	11,7	3,8	0,9
Til8Q	13,7	11,2	3,4	-0,5	13,7	11,6	3,7	-0,6
Till8Q	13,9	13,0	4,0	-0,4	17,1	14,7	4,4	-0,3
Tilli8 Q	12,7	9,8	4,1	-0,4	17,4	14,1	4,0	0,3

Tabela 41. Wyniki badań wartości eksperymentalnych oraz przewidywanych dla stali ulepszonej cieplnie 40HM+QT

	Eksp	erymenta	alne wyniki		Przewidywane wyniki			
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm
Til9Q	16,8	16,8	3,2	-0,9	18,3	17,2	3,3	0,2
Till9Q	24,2	21,6	4,3	1,2	21,1	20,1	4,2	0,6
Tilli9 Q	24,6	21,7	4,1	1,9	21,0	19,3	3,7	0,8

Tabela 42. Wyniki badań wartości eksperymentalnych oraz przewidywanych dla stopu aluminium PA6

	Eksp	erymenta	alne wyni	ki	Pr	zewidyw	ane wyni	ki
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RONt 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RONt 15 UPR, μm	DE, μm
Til1A	28,2	22,7	9,0	9,9	32,3	26,2	9,1	13,6
Till1A	28,8	21,1	11,1	9,3	30,3	23,3	12,6	8,5
Till1A	39,2	36,6	14,9	22,8	33,4	30,3	13,0	17,0
Til2A	48,0	34,1	16,9	30,4	45,5	32,2	15,2	27,9
Till2A	46,3	33,1	15,9	21,6	43,1	28,8	16,2	23,1
Till12A	37,1	24,5	17,4	22,6	45,7	34,3	17,2	29,7
Til3A	49,2	37,6	14,4	30,2	44,8	33,8	16,2	29,2
Till3A	43,4	32,5	15,8	28,1	42,3	30,3	15,4	24,9
Tilli3A	41,7	31,4	16,2	28,7	44,5	34,5	16,8	29,7
Til4A	39,8	33,0	12,0	32,4	41,4	34,3	13,3	29,0
Till4A	39,8	34,7	16,2	27,6	42,7	33,5	15,0	25,4
Tilli4A	47,8	38,0	14,9	25,4	44,2	39,4	16,3	33,2
Til5A	56,5	48,2	18,0	41,4	53,8	41,6	17,3	40,4
Till5A	52,7	35,1	15,4	36,5	54,2	39,9	16,8	36,9
Till15A	61,2	50,5	17,9	47,1	55,4	44,6	18,5	42,8
Til6A	48,2	42,2	14,8	38,8	52,4	44,4	16,1	38,8
Till6A	52,2	44,0	16,6	31,0	52,1	42,2	14,2	35,5
Tilli6A	51,1	40,0	18,0	41,6	53,2	45,8	16,2	39 <i>,</i> 8
Til7A	37,7	29,8	10,9	30,7	37,1	30,2	11,0	32,8
Till7A	44,1	31,6	10,9	28,8	41,8	31,3	10,9	30,8
Tilli7A	39,5	37,3	14,5	41,2	41,6	36,3	13,1	37,8

	Eksp	erymenta	alne wyni	ki	Przewidywane wyniki			
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RONt 15 UPR, μm	DE, μm
Til8A	49,8	36,7	12,5	43,1	48,8	38,6	12,8	41,3
Till8A	49,5	35,1	11,8	38,3	52,0	38,6	10,9	39,1
Tilli8A	49,1	43,6	12,4	44,4	51,8	42,4	13,4	44,3
Til9A	48,2	42,3	12,8	32,7	46,7	42,7	9,6	36,8
Till9A	53,5	45,7	5,7	37,9	48,6	41,8	6,5	34,6
Till19A	45,6	44,4	5,8	38,7	48,6	44,7	9,0	38,3

Tabela 43. Wyniki badań wartości eksperymentalnych oraz przewidywanych dla mosiądzu MO58

	Eksp	erymenta	alne wyni	iki	Pr	zewidywa	ane wynik	i
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, µm	DE, μm
Til1M	101,0	76,7	6,6	93,8	88,8	77,0	5,4	93,0
Till1M	104,7	78,7	7,6	99,3	92,3	72,1	6,8	92,7
Tilll1 M	62,3	56,4	6,2	92,8	77,7	57,1	8,0	104,3
Til2M	104,7	89,4	6,8	90,5	107,6	82,6	8,5	93,5
Till2M	102,2	79,1	10,5	102,4	111,2	76,1	9,5	99,4
Tilll2 M	102,2	52,4	12,2	108,7	100,5	67,2	10,3	104,4
Til3M	112,2	80,4	4,9	106,6	119,6	74,5	6,3	105,0
Till3M	125,5	63,2	5,0	111,5	123,1	67,3	7,1	114,6
Tilli3 M	121,5	60,8	9,7	116,2	115,6	63,1	7,5	114,8
Til4M	86,2	63,3	4,3	105,2	98,7	67,1	3,7	100,6
Till4M	98,0	66,7	3,2	106,1	100,0	70,5	3,4	105,8
Tilli4 M	86,8	51,5	4,7	116,2	86,5	51,4	5,4	114,5
Til5M	119,5	76,9	6,4	98,6	105,8	76,1	7,4	95,4
Till5M	103,0	79,6	5,1	98,2	107,6	76,5	7,0	105,9

	Eksp	erymenta	alne wyni	ki	Pr	zewidywa	ane wynik	i
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RONt 15 UPR, µm	DE, μm
Tilli5 M	100,3	63,1	9,0	108,0	97,8	64,1	8,5	108,6
Til6M	101,1	69,6	7,7	99,8	106,2	71,2	5,8	101,3
Till6M	105,4	73,8	5,5	110,0	108,2	69,6	5,5	114,6
Tilli6 M	112,0	64,6	7,2	117,5	101,5	62,6	6,5	113,0
Til7M	99,4	49,3	4,7	99,8	100,4	49,8	4,6	97,0
Till7M	104,6	57,3	3,2	103,4	99,4	61,5	2,6	107,7
Tilll7 M	87,6	44,8	4,9	112,7	87,0	38,2	5,5	113,7
Til8M	101,1	63,4	9,8	75,5	95,8	62,0	8,8	86,3
Till8M	84,9	64,5	8,1	108,7	95,8	69,4	7,1	101,3
Tilli8 M	91,1	59,3	8,5	105,9	86,9	53,6	9,3	101,7
Til9M	74,7	52,6	5,8	84,5	84,5	60,5	7,9	86,5
Till9M	88,6	65,7	5,8	100,9	85,1	64,5	6,4	103,4
Tilli9 M	81,8	57,2	9,4	106,1	79,1	54,7	8,0	100,0

Tabela 44. Wyniki badań wartości eksperymentalnych oraz przewidywanych dla Inconelu 718

	Ek	speryme	ntalne wyni	ki	Przewidywane wyniki				
Kodo wanie	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STR _t F2.5, μm	RON _t 15 UPR, μm	DE, μm	
Til1I	33,3	32,0	7,0	20,6	42,0	43,9	6,8	19,0	
Till1I	48,0	39,2	6,3	24,7	58,6	41,6	6,8	23,3	
Till11	47,8	27,4	6,7	26,8	48,7	39,9	6,3	15,2	
Til2I	63,2	35,9	5,6	14,5	35,9	32,1	6,9	12,0	
Till2I	30,0	27,1	6,1	8,4	33,5	26,0	4,8	12,6	
Till121	14,3	12,0	5,7	-3,0	33,6	27,1	5,5	8,2	
Til3I	34,9	31,8	7,1	12,7	30,6	23,3	7,7	6,8	

	Ek	speryme	ntalne wyni	ki	Prz	ewidywa	ne wyniki	
Kodo wanie	CYL _t 15 UPR, μm	STRt F2.5, μm	RON _t 15 UPR, μm	DE, μm	CYL _t 15 UPR, μm	STRt F2.5, μm	RON _t 15 UPR, μm	DE, μm
Till3I	26,6	18,5	4,5	2,5	15,7	15,2	4,3	5,0
Tilli3I	10,9	13,3	5,0	-1,7	22,5	18,0	5,8	3,3
Til4I	18,8	10,4	6,4	9,1	16,5	15,7	5,2	17,7
Till4I	21,4	12,2	5,8	7,6	33,8	16,2	6,5	11,1
Till141	23,5	16,8	5,4	5,1	23,5	13,1	5,4	8,5
Til5I	19,9	12,8	5,1	9,5	22,2	14,5	5,4	14,7
Till5I	14,4	10,3	4,9	12,3	20,5	10,7	4,4	6,2
Till151	20,4	11,9	4,8	4,1	20,2	10,7	4,6	6,3
Til6I	23,9	14,3	5,5	13,5	28,8	16,2	6,3	13,5
Till6I	26,7	17,8	3,6	16,3	14,5	9,9	3,8	4,3
Tilli6I	22,0	12,3	4,8	11,0	20,9	11,8	4,8	6,3
Til7I	55,6	23,6	4,9	53,8	33,9	24,9	4,7	52,2
Till7I	47,0	21,2	5,6	32,6	52,0	28,1	7,3	34,5
Till171	45,0	24,4	5,4	38,7	41,3	23,7	5,5	37,4
Til8I	52,1	41,8	4,2	63,0	51,6	34,2	5,0	53,1
Till8I	55,3	29,1	5,2	37,1	50,4	32,7	5,0	35,4
Till181	58,1	38,7	5,6	42,9	49,8	31,5	4,7	40,2
Til9I	64,0	34,0	5,8	51,2	70,0	46,5	5,9	55,9
Till9I	59,5	42,7	4,0	33,2	56,1	42,0	4,2	39,3
Tilli9i	51,0	31,1	5,3	40,6	62,3	43,0	4,9	45,0

Na rys. 42-61 przedstawiono efekty główne (średnie odpowiedzi) wartości parametrów wyjściowych (CYL_t, STR_t, RON_t, DE) w stosunku do każdego badanego parametru wejściowego (prędkość obrotowa wrzeciona, posuw na obrót oraz układ kinematyczny) dla stali C45, stali ulepszonej cieplnie 40HM+QT, stopu aluminium PA6, stopu mosiądzu MO58 oraz Inconelu 718.

Rys. 42. Wykresy efektów głównych odchyłki walcowości dla stali C45

Z danych przedstawionych na rys. 42 wynika, że przy prędkości obrotowej wynoszącej 4775 obr/min, uzyskano najmniejszą wartość odchyłki walcowości wynoszącą 16,8 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki walcowości na poziomie (CYL_t = 13,8 μ m) jest 0,14 mm/obr. Stosując w procesie wiercenia stali C45 układ kinematyczny drugi, uzyskano najmniejszą wartość odchyłki walcowości otworu wynoszącą 17,7 μ m. Zauważono, że wzrost parametrów technologicznych powoduje zmniejszenie wartości odchyłki walcowości otworu w stali C45.

Rys. 43. Wykresy efektów głównych odchyłki prostoliniowości dla stali C45

Z rys. 43 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości wynoszącą 14,2 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki prostoliniowości na poziomie (STR_t = 12 μ m) jest 0,14 mm/obr. Wykorzystując

w procesie wiercenia stali C45 układ kinematyczny pierwszy oraz drugi, uzyskano najmniejszą wartość odchyłki walcowości otworu wynoszącą 16,4 µm. Zauważono, że wzrost parametrów technologicznych powoduje zmniejszenie wartości odchyłki prostoliniowości otworu w stali C45.

Rys. 44. Wykresy efektów głównych odchyłki okrągłości dla stali C45

Z danych przedstawionych na rys. 44 wynika, że stosując prędkość obrotową wynoszącą 3979 obr/min, uzyskano najmniejszą wartość odchyłki okrągłości wynoszącą 4,4 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki okrągłości na poziomie (RON_t = 4,2 μ m) jest 0,12 mm/obr. Wykorzystując w procesie wiercenia stali C45 układ kinematyczny trzeci, uzyskano najmniejszą wartość odchyłki okrągłości otworu wynoszącą 4,5 μ m.

Rys. 45. Wykresy efektów głównych błędu średnicy dla stali C45

Z rys. 45 wynika, że stosując prędkość obrotową wynoszącą 3979 obr/min, uzyskano idealną średnice otworu wynoszącą 6 mm. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość błędu średnicy otworu na poziomie ($DE = -0.4 \mu m$) jest 0.12 mm/obr. Wykorzystując w procesie wiercenia stali C45 układ kinematyczny drugi, uzyskano najkorzystniejszą wartość błędu średnicy otworu wynoszącą 0.1 μm .

Rys. 46. Wykresy efektów głównych odchyłki walcowości dla stali ulepszonej cieplnie 40HM+QT

Z danych przedstawionych na rys. 46 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki walcowości wynoszącą 12,5 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki walcowości na poziomie (CYL_t = 11,5 μ m) jest 0,12 mm/obr. Wykorzystując w procesie wiercenia stali ulepszonej cieplnie 40HM+QT układ kinematyczny pierwszy, uzyskano najmniejszą wartość odchyłki walcowości otworu wynoszącą 12,3 μ m. Zauważono, że wzrost prędkości obrotowej wrzeciona powoduje zmniejszenie wartości odchyłki walcowości otworu.

Rys. 47. Wykresy efektów głównych odchyłki prostoliniowości dla stali ulepszonej cieplnie 40HM+QT

Z rys. 47 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości wynoszącą 11,2 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki prostoliniowości na poziomie (STR_t = 12 μ m) jest 0,12 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny pierwszy, uzyskano najmniejszą wartość odchyłki prostoliniowości otworu wynoszącą 11,8 μ m. Zauważono, że wzrost prędkości obrotowej wrzeciona powoduje zmniejszenie wartości odchyłki prostoliniowości otworu.

Rys. 48. Wykresy efektów głównych odchyłki okrągłości dla stali ulepszonej cieplnie 40HM+QT

Z danych przedstawionych na rys. 48 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki okrągłości wynoszącą 4,2 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki okrągłości na poziomie (RON_t = 3,9 μ m) jest 0,1 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny pierwszy, uzyskano najmniejszą wartość odchyłki okrągłości otworu wynoszącą 4 μ m. Zauważono, że wzrost prędkości obrotowej wrzeciona oraz zmniejszenie posuwu na obrót powoduje zmniejszenie wartości odchyłki okrągłości otworu w stali ulepszonej cieplnie 40HM+QT.

Rys. 49. Wykresy efektów głównych błędu średnicy dla stali ulepszonej cieplnie 40HM+QT

Z rys. 49 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość błędu średnicy wynoszącą 0,2 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki walcowości na poziomie (DE = 0,2 μ m) jest 0,1 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny trzeci, uzyskano najmniejszą wartość błędu średnicy otworu wynoszącą 0,3 μ m.

Rys. 50. Wykresy efektów głównych odchyłki walcowości dla stopu aluminium PA6

Z danych przedstawionych na rys. 50 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki walcowości wynoszącą 38,3 µm. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki walcowości na poziomie (CYL_t = 40,2 µm) jest 0,14 mm/obr. Zauważono, że niezależnie od zastosowanego układu kinematycznego podczas wiercenia stopu aluminium PA6, uzyskano prawie takie same wartości odchyłki walcowości otworu.

Rys. 51. Wykresy efektów głównych odchyłki prostoliniowości dla stopu aluminium PA6

Z rys. 51 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości wynoszącą 31,6 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki prostoliniowości na poziomie (STR_t = 30,4 μ m) jest 0,14 mm/obr. Wykorzystując układ kinematyczny drugi, uzyskano najmniejszą wartość odchyłki prostoliniowości otworu wynoszącą 34,8 μ m. Zauważono, że wzrost prędkości obrotowej wrzeciona powoduje zmniejszenie wartości odchyłki prostoliniowości otworu w stopie aluminium.

Rys. 52. Wykresy efektów głównych odchyłki okrągłości dla stopu aluminium PA6

Z danych przedstawionych na rys. 52 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki okrągłości wynoszącą 12,7 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki okrągłości na poziomie (RON_t = 10,8 μ m) jest 0,14 mm/obr. Wykorzystując układ kinematyczny drugi, uzyskano najmniejszą wartość odchyłki okrągłości otworu wynoszącą 13,3 μ m.

Rys. 53. Wykresy efektów głównych błędu średnicy dla stopu aluminium PA6

Z rys. 53 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość błędu średnicy wynoszącą 25,3 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość błąd średnicy na poziomie (DE = 22,6 μ m) jest 0,14 mm/obr. Wykorzystując układ kinematyczny drugi, uzyskano najmniejszą wartość błędu średnicy otworu wynoszącą 28,8 μ m. Zauważono, że zwiększenie posuwu na obrót powoduje zmniejszenie wartości błędu średnicy otworu w stopie aluminium PA6.

Rys. 54. Wykresy efektów głównych odchyłki walcowości dla stopu mosiądzu MO58

Z danych przedstawionych na rys. 54 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki walcowości wynoszącą 92,3 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki walcowości na poziomie (CYL_t = 90,4 μ m) jest 0,1 mm/obr. Wykorzystując w procesie wiercenia stopie mosiądzu MO58 układ kinematyczny trzeci, uzyskano najmniejszą wartość odchyłki walcowości otworu wynoszącą 93,9 μ m. Zauważono, że wzrost wartości prędkości obrotowej wrzeciona oraz spadek wartości posuwu na obrót powoduje zmniejszenie wartości odchyłki walcowości otworu w stopie mosiądzu MO58.

Rys. 55. Wykresy efektów głównych odchyłki prostoliniowości dla stopu mosiądzu MO58

Z rys. 55 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości wynoszącą 60,5 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki prostoliniowości na poziomie (STR_t = 57,1 μ m) jest 0,11 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny trzeci, uzyskano najmniejszą wartość odchyłki prostoliniowości otworu wynoszącą 56,7 μ m. Zauważono, że spadek posuwu na obrót powoduje zmniejszenie wartości odchyłki prostoliniowości.

Rys. 56. Wykresy efektów głównych odchyłki okrągłości dla stopu mosiądzu MO58

Z danych przedstawionych na rys. 56 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość odchyłki okrągłości wynoszącą 5 µm. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki walcowości na poziomie (RON_t = 5,9 µm) jest 0,12 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny drugi, uzyskano najmniejszą wartość odchyłki okrągłości otworu wynoszącą 6 µm.

Rys. 57. Wykresy efektów głównych błędu średnicy dla stopu mosiądzu MO58

Z rys. 57 wynika, że stosując prędkość obrotową wynoszącą 3979 obr/min, uzyskano najmniejszą wartość błędu średnicy wynoszącą 99,6 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość błędu średnicy na poziomie (DE = 99,7 μ m) jest 0,11 mm/obr. Wykorzystując w procesie wiercenia stopie mosiądzu MO58 układ kinematyczny pierwszy, uzyskano najmniejszą wartość błędu średnicy otworu wynoszącą 94,9 μ m.

Rys. 58. Wykresy efektów głównych odchyłki walcowości dla Inconelu 718

Z danych przedstawionych na rys. 58 wynika, że stosując prędkość obrotową wynoszącą 955 obr/min, uzyskano najmniejszą wartość odchyłki walcowości wynoszącą 35,7 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki walcowości na poziomie (CYL_t = 21,2 μ m) jest 0,06 mm/obr. Wykorzystując w procesie wiercenia Inconelu 718 układ kinematyczny trzeci, uzyskano najmniejszą wartość odchyłki walcowości otworu wynoszącą 32,6 μ m. Zauważono, że zmniejszenie wartości posuwu na obrót powoduje zmniejszenie wartości odchyłki walcowości w Inconelu 718.

Rys. 59. Wykresy efektów głównych odchyłki prostoliniowości dla Inconelu 718

Z rys. 59 wynika, że stosując prędkość obrotową wynoszącą 800 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości wynoszącą 23 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość odchyłki prostoliniowości na poziomie (STR_t = 13,2 μ m) jest 0,06 mm/obr. Wykorzystując w procesie wiercenia Inconelu 718 układ kinematyczny trzeci, uzyskano najmniejszą wartość odchyłki prostoliniowości otworu wynoszącą 22 μ m. Zauważono, że spadek wartości posuwu na obrót powoduje zmniejszenie wartości odchyłki prostoliniowości otworu.

Rys. 60. Wykresy efektów głównych odchyłki okrągłości dla Inconelu 718

Z danych przedstawionych na rys. 60 wynika, że stosując prędkość obrotową wynoszącą 955 obr/min, uzyskano najmniejszą wartość odchyłki okrągłości wynoszącą 5,1 μ m. Najkorzystniejszymi wartościami posuwu na obrót pozwalającymi uzyskać wartość odchyłki okrągłości na poziomie (RON_t = 5,1 μ m) są 0,06 mm/obr oraz 0,09 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny drugi, uzyskano najmniejszą wartość odchyłki okrągłości otworu wynoszącą 5,1 μ m.

Rys. 61. Wykresy efektów głównych błędu średnicy dla Inconelu 718

Z rys. 61 wynika, że stosując prędkość obrotową wynoszącą 955 obr/min, uzyskano najmniejszą wartość błędu średnicy wynoszącą 19,9 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość błędu średnicy na poziomie (DE = 9,8 μ m) jest 0,06 mm/obr. Wykorzystując w procesie wiercenia Inconelu 718 układ kinematyczny trzeci, uzyskano najmniejszą wartość błędu średnicy otworu wynoszącą 18,3 μ m. Zauważono, że zmniejszenie wartości posuwu na obrót powoduje zmniejszenie wartości błędu średnicy otworu.

Wnioski:

- 1. Tablicę ortogonalną TaguchiL27 zastosowano do oceny wpływu parametrów wejściowych takich jak prędkość skrawania, posuw na obrót oraz kinematyka obróbki na parametry wyjściowe np. błąd średnicy, odchyłki walcowości, prostoliniowości i okrągłości.
- 2. Przedstawione równania posłużą do przewidywania (prognozowania) odchyłek kształtu i położenia otworów wykonywanych w wymienionych wyżej materiałach.
- Zbudowane empiryczne modele matematyczne cechują się bardzo dużą korelacją w stosunku do obszernych badań dla stali C45: odchyłka walcowości R² = 85,69%, odchyłka prostoliniowości R² = 81,66%, odchyłka okrągłości R² = 83,28%, błąd średnicy otworu R² = 67,98%. Dla stali ulepszonej cieplnie 40HM+QT: odchyłka walcowości R² = 67,29%, odchyłka prostoliniowości R² = 65,38%, odchyłka okrągłości R² = 71,56%, błąd średnicy otworu R² = 64,45%. Dla stopu aluminium PA6: odchyłka walcowości R² = 78,88%, odchyłka prostoliniowości R² = 72,13%, odchyłka okrągłości R² = 81,10%, błąd średnicy otworu R² = 87,63%. Dla mosiądzu MO58: odchyłka walcowości R² = 70,11%, odchyłka prostoliniowości R² = 74,27%. Dla Inconelu 718: odchyłka walcowości R² = 70,81%, odchyłka prostoliniowości R² = 72,39%, odchyłka walcowości R² = 83,50%, błąd średnicy otworu R² = 88,47%.
- 4. Zbudowane modele matematyczne są istotne ze względu na to, że wartości p są mniejsze niż 0,05.
- 5. Wysokie wartości współczynnika determinacji, ukazuje dobre dopasowanie przewidywanych wartości z eksperymentalnymi wynikami.
- 6. Wykresy reszt wskazują, że założenie rozkładu normalności jest spełnione ze względu na małą odległość punktów umieszczonych względem linii.
- 7. Układ kinematyczny ma kluczowe znaczenie w ocenie następujących parametrów: dla stali C45 w błędzie średnicy 58,62%, dla stali ulepszonej cieplnie 40HM+QT w odchyłce okrągłości 43,42%, dla stopu mosiądzu MO58 w odchyłce prostoliniowości 60,92% oraz w błędzie średnicy 37,05%, dla Inconelu 718 w odchyłce walcowości 65,37%.
- Wartości eksperymentalne z przewidywanymi dla większości wyników różnią się tylko o 0±2 μm.

9. Wybór układu kinematycznego zależy od obrabianego materiału. W stali C45 nie ma jednoznacznego wyboru. Dla stali ulepszonej cieplnie 40HM+QT, stosując układ kinematyczny pierwszy, uzyskano najmniejsze wartości parametrów wyjściowych (CYLt, STRt, RONt, DE). Dla stopu aluminium PA6, stosując drugi układ kinematyczny, uzyskano 3 z 4 parametrów wyjściowych (STRt, RONt, DE) na najmniejszych wartościach. Dla stopu mosiądzu MO58 układ kinematyczny trzeci był najkorzystniejszy, gdyż 2 z 4 parametrów wyjściowych (CYLt, STRt) uzyskano najmniejsze wartości. Dla Inconelu 718 również układ kinematyczny trzeci był najlepszy ze względu na to, że 3 z 4 parametrów badanych (CYLt, STRt, DE) osiągnęły najmniejsze wartości.

5.1.3. Badania symulacyjne wybranych modeli

W tym podrozdziale przedstawiono badania symulacyjne zbudowanych modeli do przewidywania wartości wyjściowych. Analizując wyniki przeprowadzonych badań stwierdzono, że układ kinematyczny miał największy wpływ w następujących wzorach (43), (46), (53), (55) oraz (56), dlatego też poniżej przedstawiono symulację tych wzorów.

Rys. 62. Wpływ parametrów technologicznych w pierwszej kinematyce na błąd średnicy otworu w stali C45 na podstawie równania (43)

Analizując rys. 62 dla pierwszego układu kinematycznego zauważono, że liniowe zwiększanie posuwu na obrót przy jednoczesnym zwiększaniu prędkości obrotowej wrzeciona pozwala na uzyskanie najmniejszej wartości błędu średnicy otworu.

Rys. 63. Wpływ parametrów technologicznych w drugiej kinematyce na błąd średnicy otworu w stali C45 na podstawie równania (43)

Analizując rys. 63 dla drugiego układu kinematycznego stwierdzono, że liniowe zmniejszanie posuwu na obrót przy jednoczesnym zwiększaniu prędkości obrotowej wrzeciona pozwala na uzyskanie najmniejszej wartości błędu średnicy otworu.

Rys. 64. Wpływ parametrów technologicznych w trzeciej kinematyce na błąd średnicy otworu w stali C45 na podstawie równania (43)

Analizując rys. 64 dla trzeciego układu drugiego stwierdzono, że zastosowanie stałej wartości posuwu na obrót wynoszącego 0,115 mm/obr niezależnie od zastosowanej prędkości obrotowej wrzeciona pozwala na uzyskanie najmniejszej wartości błędu średnicy otworu.

Rys. 65. Wpływ parametrów technologicznych w pierwszej kinematyce na odchyłkę okrągłości otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (46)

Analizując rys. 65 dla pierwszego układu kinematycznego zauważono, że stosując najmniejszy posuw na obrót 0,11 mm/obr oraz najmniejszą prędkość obrotową wrzeciona 3183 obr/min, uzyskano najmniejszą wartość odchyłki okrągłości otworu. W tym przypadku zmiana prędkości obrotowej wrzeciona nie wpływa drastycznie na zmianę wartości odchyłki okrągłości. Jednakże wzrost posuwu na obrót gwałtownie zmienia wartość wyżej wymienionego parametru.

Rys. 66. Wpływ parametrów technologicznych w drugiej kinematyce na odchyłkę okrągłości otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (46)

Analizując rys. 66 dla drugiego układu kinematycznego stwierdzono, że największa prędkość obrotową wrzeciona 4775 obr/min pozwala uzyskać

najmniejszą wartość odchyłki okrągłości. Niezależnie od zastosowanego posuwu na obrót. W tym przypadku zwiększenie prędkości obrotowej wrzeciona wpływa drastycznie na zmianę wartości odchyłki okrągłości.

Rys. 67. Wpływ parametrów technologicznych w trzeciej kinematyce na odchyłkę okrągłości otworu w stali ulepszonej cieplnie 40HM+QTna podstawie równania (46)

Analizując rys. 67 dla trzeciego układu kinematycznego zauważono, że stosując najmniejszy posuw na obrót 0,11 mm/obr oraz małą prędkość obrotową wrzeciona 3183 obr/min, uzyskano najmniejszą wartość odchyłki okrągłości otworu.

Rys. 68. Wpływ parametrów technologicznych w pierwszej kinematyce na odchyłkę prostoliniowości otworu w mosiądzu MO58 na podstawie równania (53)

Analizując rys. 68 dla pierwszego układu kinematycznego stwierdzono, że wiercąc z najmniejszym posuwem na obrót 0,1 mm/obr oraz z największą prędkością

obrotową wrzeciona 4775 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości otworu.

Rys. 69. Wpływ parametrów technologicznych w drugiej kinematyce na odchyłkę prostoliniowości otworu w mosiądzu MO58 na podstawie równania (53)

Analizując rys. 69 dla drugiego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości otworu. W tym przypadku istnieje inna możliwość uzyskania małej wartości odchyłki prostoliniowości dla wartości posuwu na obrót 0,1 mm/obr oraz małej wartości prędkości obrotowej wrzeciona 3183 obr/min.

Rys. 70. Wpływ parametrów technologicznych w trzeciej kinematyce na odchyłkę prostoliniowości otworu w mosiądzu MO58 na podstawie równania (53)

Analizując rys. 70 dla trzeciego układu kinematycznego zauważono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz największa wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość odchyłki prostoliniowości otworu. W tym przypadku zmiana prędkości obrotowej wrzeciona oraz posuwu na obrót drastycznie pogarsza badany parametr.

Rys. 71. Wpływ parametrów technologicznych w pierwszej kinematyce na błąd średnicy otworu w mosiądzu MO58 na podstawie równania (55)

Analizując rys. 71 dla pierwszego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz wartość prędkości obrotowej wrzeciona z przedziału od 3183 obr/min do 4000 obr/min, uzyskano najmniejszą wartość błędu średnicy otworu.

Rys. 72. Wpływ parametrów technologicznych w drugiej kinematyce na błąd średnicy otworu w mosiądzu MO58 na podstawie równania (55)

Analizując rys. 72 dla drugiego układu kinematycznego zauważono, że stosując największy posuw na obrót 0,14 mm/obr oraz największa wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość błędu średnicy otworu.

Rys. 73. Wpływ parametrów technologicznych w trzeciej kinematyce na błąd średnicy otworu w mosiądzu MO58 na podstawie równania (55)

Analizując rys. 73 dla trzeciego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz wartość prędkości obrotowej wrzeciona od 3183 obr/min do 4000 obr/min, uzyskano najmniejszą wartość błędu średnicy otworu. W tym przypadku widać, że mniejszą wartość możemy uzyskać, stosując jeszcze drugi przedział: posuw na obrót 0,14 mm/obr oraz prędkość obrotową wrzeciona 4400 obr/min.

Rys. 74. Wpływ parametrów technologicznych w pierwszej kinematyce na odchyłkę walcowości otworu w Inconelu 718 na podstawie równania (56)

Analizując rys. 74 dla pierwszego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,06 mm/obr oraz niezależna wartość prędkości obrotowej wrzeciona, uzyskano najmniejszą wartość odchyłki walcowości otworu. W tym przypadku zmiana prędkości obrotowej wrzeciona nie wpływa na zmianę wartości odchyłki walcowości. Jednakże wzrost posuwu na obrót gwałtownie zmienia wartość wyżej wymienionego parametru.

Rys. 75. Wpływ parametrów technologicznych w drugiej kinematyce na odchyłkę walcowości otworu w Inconelu 718 na podstawie równania (56)

Analizując rys. 75 dla drugiego układu kinematycznego zauważono, że stosując najmniejszy posuw na obrót 0,06 mm/obr oraz najmniejsza wartość prędkości obrotowej wrzeciona 637 obr/min, uzyskano najmniejszą wartość odchyłki walcowości otworu. W tym przypadku zmiana prędkości obrotowej wrzeciona nie wpływa drastycznie na zmianę wartości odchyłki walcowości. Jednakże wzrost posuwu na obrót gwałtownie zmienia wartość wyżej wymienionego parametru.

Rys. 76. Wpływ parametrów technologicznych w trzeciej kinematyce na odchyłkę walcowości otworu w Inconelu 718 na podstawie równania (56)

Analizując rys. 76 dla trzeciego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,06 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 955 obr/min, uzyskano najmniejszą wartość odchyłki walcowości otworu. W tym przypadku zmiana prędkości obrotowej wrzeciona nie wpływa drastycznie na zmianę wartości odchyłki walcowości. Jednakże wzrost posuwu na obrót gwałtownie zwiększa wartość wyżej wymienionego parametru.

Wnioski:

- 1. Badania symulacyjne poszczególnych parametrów wykazały różne przedziały odpowiednich zakresów parametrów technologicznych w stosunku do układu kinematycznego.
- 2. Dla błędu średnicy otworu w stali C45 odpowiednie zakresy parametrów technologicznych były następujące: dla KIN I $n \in < 3183;4775 >, f_n \in < 0,12;0,14 >$, dla KIN II $n \in < 3183;4775 >, f_n \in < 0,125;0,14 >$ oraz dla KIN III $n \in < 3183;4775 >, f_n \in < 0,125;0,14 >$ oraz dla KIN III $n \in < 3183;4775 >, f_n \in < 0,11;0,12 >$.
- 3. Dla odchyłki okrągłości otworu w stali ulepszonej cieplnie 40HM+QT odpowiednie zakresy parametrów technologicznych były następujące: dla KIN I n = 3183, $f_n = 0,1$, dla KIN II n = 4775, $f_n = 0,1$ lub $f_n = 0,14$ oraz dla KIN III n = 3183 lub n = 4775, $f_n \in < 0,1$; 0,105 >.
- 4. Dla odchyłki prostoliniowości otworu w stopie mosiądzu MO58 odpowiednie zakresy parametrów technologicznych były następujące: dla KIN I n = 4775, $f_n = 0,1$, dla KIN II n = 3183 lub 4775, $f_n = 0,1$ oraz dla KIN III n = 4775, $f_n = 0,1$.
- 5. Dla błędu średnicy otworu w mosiądzu MO58 odpowiednie zakresy parametrów technologicznych były następujące: dla KIN I $n \in < 3183$; 4000 >, $f_n = 0,1$, dla KIN II n = 4775, $f_n = 0,14$ oraz dla KIN III $n \in < 3183$; 4000 >, $f_n = 0,1$.
- 6. Dla odchyłki walcowości otworu w Inconelu 718 odpowiednie zakresy parametrów technologicznych były następujące: dla KIN I $n \in < 637, 955 >$, $f_n = 0,06$, dla KIN II $n = 637, f_n = 0,06$ oraz dla KIN III n = 955, $f_n = 0,06$.

5.2. Analiza chropowatości powierzchni wykonanych otworów

Kolejnym celem przeprowadzonych badań była analiza chropowatości powierzchni otworów wykonanych w różnych układach kinematycznych procesu wiercenia. W tym podrozdziale przedstawiono analizę wybranych parametrów chropowatości powierzchni.

5.2.1 Analiza pomiarów geometrii wyrobów

Wykonane otwory zostały przebadane za pomocą profilometru stykowego Form Talysurf PGI 1230 firmy Taylor Hobson. Wykonano na nim pomiary: parametru amplitudowego średniej arytmetycznej bezwzględnych wartości rzędnych wewnątrz odcinka elementarnego (Ra), parametru pionowego a mianowicie sumy wysokości najwyższego wzniesienia profilu i największej głębokości wgłębienia profilu wewnątrz odcinka pomiarowego (Rt) oraz sumę wysokości najwyższego wzniesienia profilu i głębokości najniższego wgłębienia profilu wewnątrz odcinka elementarnego (Rz).

Parametry Ra oraz Rz liczone były na odcinku elementarnym 0,8 mm. Natomiast Rt na odcinku pomiarowym 5 mm. Zastosowano filtrację 0,8 Gaussa. Pomiar dokonano końcówką diamentową o promieniu zaokrąglenia 2 μm z prędkością 0,5 mm/s. Krok próbkowania wynosił 0,125 μm.

Aby umieścić wszystkie dane wybrano tablicę ortogonalną L27. Kolorem zielonym określono wartości dla rozstępu 30%. Kolorem żółtym oznaczono przedział od 30 - 70%. Natomiast kolorem czerwonym powyżej 70%. Rozstęp liczony jest jako różnica granicznych wartości.

Tabela 45. Wyniki chropowatości powierzchni otworu w stali C45 oraz stali ulepszonej cieplnie 40HM+QT

Kodowanie	Rz, μm	Rt, µm	Ra, µm	Kodowanie	Rz, μm	Rt, µm	Ra, µm
TiI1S	2,167	3,316	0,334	TiI1Q	2,598	2,222	0,506
TiII1S	2,416	4,328	0,374	TiII1Q	2,27	3,698	0,452
TiIII1S	2,358	3,048	0,422	TiIII1Q	2,375	3,806	0,447
TiI2S	2,918	4,882	0,43	TiI2Q	2,685	3,835	0,485
TiII2S	2,846	3,81	0,45	TiII2Q	2,297	4,138	0,412
TiIII2S	3,435	4,99	0,583	TiIII2Q	2,415	4,336	0,474
TiI3S	2,393	5,048	0,347	TiI3Q	2,306	3,711	0,462
TiII3S	1,823	2,858	0,338	TiII3Q	2,359	3,822	0,437
TiIII3S	2,316	4,529	0,422	TiIII3Q	2,505	4,254	0,438
TiI4S	3,834	4,949	0,356	TiI4Q	2,765	3,594	0,527
TiII4S	3,717	8,392	0,491	TiII4Q	2,602	4,38	0,402
TiIII4S	3,441	6,296	0,54	TiIII4Q	2,572	4,003	0,466
TiI5S	4,064	5,988	0,436	TiI5Q	2,897	3,987	0,532
TiII5S	3,764	6,139	0,458	TiII5Q	2,579	4,254	0,455
TiIII5S	3,513	6,168	0,514	TiIII5Q	2,859	4,574	0,453
TiI6S	2,894	5,933	0,35	TiI6Q	2,734	4,054	0,49
TiII6S	2,82	4,969	0,429	TiII6Q	2,736	4,107	0,417
TiIII6S	2,605	5,538	0,402	TiIII6Q	2,67	3,945	0,429
TiI7S	2,846	3,949	0,414	TiI7Q	2,571	3,924	0,405
TiII7S	3,633	8,808	0,391	TiII7Q	2,213	4,215	0,391
TiIII7S	3,889	5,842	0,594	TiIII7Q	2,556	4,209	0,41
TiI8S	3,916	4,078	0,369	TiI8Q	2,47	4,277	0,478

Kodowanie	Rz, µm	Rt, µm	Ra, µm	Kodowanie	Rz, µm	Rt, µm	Ra, µm
TiII8S	3,819	5,857	0,481	TiII8Q	2,391	4,116	0,381
TiIII8S	3,489	5,166	0,495	TiIII8Q	2,447	4,235	0,456
TiI9S	2,701	3,314	0,274	TiI9Q	2,344	4,152	0,429
TiII9S	2,124	3,002	0,354	TiII9Q	2,175	4,371	0,377
Till19S	2,303	2,906	0,377	TiIII9Q	2,194	4,006	0,372

 Tabela 46. Wyniki chropowatości powierzchni otworu w stopie aluminium PA6

 oraz w stopie mosiądzu MO58

Kodowanie	Rz, µm	Rt, µm	Ra, µm	Kodowanie	Rz, µm	Rt, µm	Ra, µm
TiI1A	23,523	38,314	5,479	TiI1M	3,88	11,894	0,474
TiII1A	25,445	33,726	5,291	TiII1M	4,683	13,218	0,59
TiII11A	30,828	43,652	6,199	TiIII1M	6,922	16,953	0,815
TiI2A	27,802	36,992	5,52	TiI2M	5,262	19,382	0,62
TiII2A	24,773	34,878	4,658	TiII2M	6,95	35,818	0,767
TiIII2A	28,626	39,026	5,528	TiIII2M	8,622	30,988	0,9
TiI3A	21,675	25,554	3,726	TiI3M	4,328	17,363	0,633
TiII3A	19,927	29,746	3,959	TiII3M	6,095	25,824	0,797
TiIII3A	20,702	28,488	4,364	TiIII3M	7,465	25,508	0,855
TiI4A	22,625	34,135	5,202	TiI4M	4,029	8,759	0,414
TiII4A	29,388	32,59	5,285	TiII4M	2,756	5,851	0,34
TiIII4A	24,607	40,6	5,252	TiIII4M	6,746	22,877	0,694
TiI5A	23,477	31,389	4,87	TiI5M	5,956	12,838	0,642
TiII5A	26,356	30,943	4,315	TiII5M	5,067	14,36	0,556
TiIII5A	25,842	39,52	5,579	TiIII5M	7,943	22,625	0,951
TiI6A	19,096	28,126	3,263	TiI6M	5,345	12,556	0,98
TiII6A	18,606	27,91	3,832	TiII6M	6,246	22,273	0,639
TiIII6A	18,13	23,137	3,629	TiIII6M	6,645	26,997	0,639
TiI7A	20,329	39,492	4,891	TiI7M	4,291	16,955	0,401
TiII7A	22,908	34,79	5,072	TiII7M	1,819	7,919	0,192
TiIII7A	28,34	45,196	5,659	TiIII7M	9,852	26,534	0,721
TiI8A	23,987	42,561	4,278	TiI8M	7,112	28,238	0,981
TiII8A	22,11	41,657	4,205	TiII8M	6,524	16,498	0,656
TiIII8A	24,677	41	4,621	TiIII8M	8,876	29,569	0,807
TiI9A	18,507	30,985	3,18	TiI9M	4,739	16,818	0,932
Till9A	14,519	26,716	3,492	TiII9M	5,381	17,045	0,724

Kodowanie	Rz, μm	Rt, µm	Ra, µm	Kodowanie	Rz, μm	Rt, µm	Ra, µm
TiIII9A	15,705	26,603	3,507	TiIII9M	8,079	22,6	1,04

Kodowanie	Rz, µm	Rt, μm	Ra, µm
TiI1I	6,796	9,794	1,272
TiII1I	4,766	6,297	0,727
TiIII1I	5,609	8,383	0,837
TiI2I	6,047	9,609	1,282
TiII2I	5,917	6,923	1,061
TiIII2I	5,719	8,586	0,976
TiI3I	5,197	7,949	1,052
TiII3I	5,579	6,937	0,996
TiIII3I	5,744	8,078	1,012
TiI4I	8,462	10,978	1,314
TiII4I	7,53	10,002	1,179
TiIII4I	8,169	11,318	1,217
TiI5I	7,424	11,49	1,317
TiII5I	7,843	11,01	1,302
TiIII5I	7,42	11,282	1,183
TiI6I	6,74	10,131	1,182
TiII6I	7,236	9,864	1,311
TiIII6I	7,36	10,642	1,224
TiI7I	8,532	12,483	1,53
TiII7I	9,654	11,23	1,544
TiIII7I	8,039	11,63	1,452
TiI8I	7,682	10,852	1,373
TiII8I	8,88	12,629	1,628
TiIII8I	8,564	12,756	1,375
TiI9I	6,631	9,677	1,092
TiII9I	8,263	10,16	1,375
TiIII9I	7,567	10,963	1,23

Tabela 47. Wyniki chropowatości powierzchni otworu w Inconelu 718

Z tabel 45-47 wynika, że dla stali C45 najmniejsze wartości chropowatości powierzchni uzyskano dla: TiI1S oraz TiII9S. W tych dwóch kombinacjach wszystkie wybrane trzy parametry opisujące chropowatość powierzchni przyjmowały najniższe wartości znajdujące się w 30% wszystkich badanych próbek.

Dla stali ulepszonej cieplnie 40HM+QT nie uzyskano żadnego zestawu parametrów poniżej tzw. zielonej strefy. Jednakże widać, że najbardziej odpowiednim zestawem parametrów był zestaw TiIII9Q ze względu na uzyskanie 2 z 3 parametrów opisujących chropowatość powierzchni na najmniejszym poziomie oraz przyjmował on pozostały parametr na najniższym poziomie względem pozostałych wyników. W stopie aluminium aż pięć zestawów parametrów uzyskało wartości parametrów chropowatości powierzchni w tzw. zielonej strefie (TiI6A, TiII6A, TiII6A, TiII9A oraz TiII19A). Dla stopu mosiądzu MO58 najmniejsze wartości uzyskano dla następujących zestawów: TiI4M, TiII4M oraz TiII7M. W Inconelu 718 najbardziej korzystnymi zestawami w stosunku do wybranych parametrów chropowatości powierzchni oraz TiII3I.

5.2.2. Analiza statystyczna ANOVA

Tak jak omówiono w podrozdziale 5.1.2. w analizie statystycznej stosowano model regresji powierzchni ze względu na jej hybrydowość. Zbadano wpływ parametrów wejściowych (n, f_n , KIN) na parametry wyjściowe (Rz, Rt, Ra). Poniżej w tabelach przedstawiono wyniki tych analiz.

Ffekt	SS	DF	MS	F	n	Udział procentowy
Model	10 4 4 0 0	0	1 1610	15 2020	P 0.0000	o uziur procentowy
Niodel	10,4490	9	1,1010	15,5252	0,0000	
Wyraz wolny	4,3942	1	4,3942	57,9965	0,0000	
n	4,2236	1	4,2236	55,7442	0,0000	33,44
n ²	3,2431	1	3,2431	42,8037	0,0000	25,68
\mathbf{f}_{n}	2,1242	1	2,1242	28,0356	0,0001	16,82
f_n^2	1,8194	1	1,8194	24,0130	0,0001	14,41
KIN	0,0991	1	0,0991	1,3086	0,2685	0,78
KIN ²	0,0032	1	0,0032	0,0425	0,8391	0,03
$n \cdot f_n$	0,6679	1	0,6679	8,8149	0,0086	5,29
n∙KIN	0,4187	1	0,4187	5,5260	0,0311	3,32
f _n ·KIN	0,0307	1	0,0307	0,4052	0,5329	0,24
Błąd	1,2880	17	0,0758			10,97
Łącznie	11,7370	26	63,42	33,99	2,59	100,00

Tabela 48. Analiza statystyczna ANOVA dla parametru Rz otworu wywierconego w stali C45

 $R = 0,9435; R^2 = 0,8903$

Z tabeli 48 wynika, że prędkość obrotowa wrzeciona wpłynęła w 63,42% na parametr Rt otworu. Reszta przypadła posuwowi na obrót 33,99% oraz układowi kinematycznemu 2,59%.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	58,5579	9	6,5064	58,6808	0,0000	
Wyraz wolny	21,2159	1	21,2159	191,3439	0,0000	
n	5,1975	1	5,1975	46,8757	0,0000	7,22
n ²	0,9559	1	0,9559	8,6214	0,0092	1,33
$\mathbf{f}_{\mathbf{n}}$	21,3710	1	21,3710	192,7428	0,0000	29,70
f_n^2	15,5880	1	15,5880	140,5868	0,0000	21,66
KIN	0,0525	1	0,0525	0,4735	0,5007	0,07
KIN ²	0,0944	1	0,0944	0,8516	0,3690	0,13
$n \cdot f_n$	10,3045	1	10,3045	92,9354	0,0000	14,32
n∙KIN	11,8626	1	11,8626	106,9874	0,0000	16,49
f _n ·KIN	6,5307	1	6,5307	58,8995	0,0000	9,08
Błąd	1,8849	17	0,1109			3,12
Łącznie	60,4428	26				100,00
$D = 0.0042 D^{2}$	0.000					

Tabela 49. Analiza statystyczna ANOVA dla parametru Rt otworu wywierconego w stali C45

 $R = 0,9843; R^2 = 0,9688$

Z tabeli 49 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe wpłynął on w 63,07% na parametr Rt. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 23,95%, reszta przypadła układowi kinematycznemu 12,99%.

Tabela 50. Analiza statystyczna ANOVA dla parametru Ra otworu wywierconego
w stali C45

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	0,1318	9	0,0146	9,1953	0,0001	
Wyraz wolny	0,0283	1	0,0283	17,7655	0,0006	
n	0,0410	1	0,0410	25,7642	0,0001	27,57
n ²	0,0258	1	0,0258	16,1998	0,0009	17,35
$\mathbf{f}_{\mathbf{n}}$	0,0091	1	0,0091	5,7011	0,0288	6,12
f_n^2	0,0047	1	0,0047	2,9420	0,1045	3,16
KIN	0,0016	1	0,0016	1,0126	0,3284	1,08
KIN ²	0,0541	1	0,0541	33,9536	0,0000	36,38
$n \cdot f_n$	0,0115	1	0,0115	7,2022	0,0157	7,73

Efekt	SS	DF	MS	F	р	Udział procentowy
n·KIN	0,0003	1	0,0003	0,1763	0,6798	0,20
f _n ·KIN	0,0006	1	0,0006	0,3910	0,5401	0,40
Błąd	0,0271	17	0,0016			17,05
Łącznie	0,1589	26				100,00

 $R = 0,9108; R^2 = 0,8295$

Z tabeli 50 wynika, że prędkość obrotowa wrzeciona wpłynęła w 48,89% na parametr Ra. Układ kinematyczny wpłynął w 37,76%, natomiast posuw na obrót 13,35%.

Tabela 51. Analiza statystyczna ANOVA dla parametru Rz otworu wywierconego w stali ulepszonej cieplnie 40HM+QT

			1 3			
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	0,8992	9	0,0999	10,2015	0,0000	
Wyraz wolny	0,3960	1	0,3960	40,4345	0,0000	
n	0,0679	1	0,0679	6,9369	0,0174	4,95
n ²	0,0434	1	0,0434	4,4315	0,0505	3,16
$\mathbf{f}_{\mathbf{n}}$	0,6204	1	0,6204	63,3516	0,0000	45,22
f_n^2	0,5926	1	0,5926	60,5106	0,0000	43,20
KIN	0,0040	1	0,0040	0,4097	0,5307	0,29
KIN ²	0,0004	1	0,0004	0,0407	0,8426	0,03
$n \cdot f_n$	0,0256	1	0,0256	2,6115	0,1245	1,87
n∙KIN	0,0169	1	0,0169	1,7225	0,2068	1,23
$f_n \cdot KIN$	0,0007	1	0,0007	0,0754	0,7869	0,05
Błąd	0,1665	17	0,0098			15,62
Łącznie	1,0657	26				100,00
$D = 0.0196, D^2$	0.0420					

 $R = 0,9186; R^2 = 0,8438$

Z tabeli 51 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Wpłynął on w 89,38% na parametr Rz. Reszta przypadła prędkości obrotowej wrzeciona 9,66% oraz układowi kinematycznemu 0,96%.

Tabela 52. Analiza statystyczna ANOVA dla parametru Rt otworu wywierconego w stali ulepszonej cieplnie 40HM+QT

			<u> </u>		<u> </u>	
Efekt	SS	DF	MS	F	р	Udział procentowy
Model	3,6093	9	0,4010	5,9780	0,0008	
Wyraz wolny	0,2835	1	0,2835	4,2264	0,0555	
n	0,6583	1	0,6583	9,8135	0,0061	21,84
Efekt	SS	DF	MS	F	р	Udział procentowy
---------------------	--------	----	--------	--------	--------	-------------------
n ²	0,4486	1	0,4486	6,6866	0,0192	14,89
\mathbf{f}_{n}	0,1893	1	0,1893	2,8221	0,1113	6,28
f_n^2	0,1129	1	0,1129	1,6827	0,2119	3,75
KIN	0,4155	1	0,4155	6,1936	0,0235	13,79
KIN ²	0,3510	1	0,3510	5,2316	0,0353	11,65
$n \cdot f_n$	0,2945	1	0,2945	4,3904	0,0514	9,77
n·KIN	0,2806	1	0,2806	4,1834	0,0566	9,31
f _n ·KIN	0,2629	1	0,2629	3,9186	0,0642	8,72
Błąd	1,1405	17	0,0671			24,01
Łącznie	4,7498	26				100,00

 $R = 0,8717; R^2 = 0,7599$

Z tabeli 52 wynika, że prędkość obrotowa wrzeciona osiągnęła wpływ wynoszący 46,27% na parametr Rt. Układ kinematyczny wpłynął w 34,45%, natomiast reszta przypadła posuwowi na obrót 19,28%

Tabela 53. Analiza statystyczna ANOVA dla parametru Ra otworu wywierconego w stali ulepszonej cieplnie 40HM+QT

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	0,0389	9	0,0043	7,4301	0,0002	
Wyraz wolny	0,0038	1	0,0038	6,5581	0,0203	
n	0,0022	1	0,0022	3,7767	0,0687	13,58
n ²	0,0029	1	0,0029	5,0366	0,0384	17,90
\mathbf{f}_{n}	0,0049	1	0,0049	8,5173	0,0096	30,25
f_n^2	0,0052	1	0,0052	8,9520	0,0082	32,10
KIN	0,0005	1	0,0005	0,8483	0,3699	3,09
KIN ²	0,0002	1	0,0002	0,3695	0,5513	1,23
$n \cdot f_n$	0,0001	1	0,0001	0,2295	0,6380	0,62
n∙KIN	0,0002	1	0,0002	0,2953	0,5939	1,23
$f_n \cdot KIN$	0,0000	1	0,0000	0,0008	0,9777	0,00
Błąd	0,0099	17	0,0006			20,29
Łącznie	0,0487	26				100,00
\mathbf{D} 0.0000 \mathbf{D}^2	0 7071	-				

 $R = 0,8929; R^2 = 0,7971$

Z tabeli 53 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 62,65% na parametr Ra. Kolejnym

wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 32,41%, reszta przypadła układowi kinematycznemu 4,94%.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	389,9960	9	43,3329	12,5467	0,0000	
Wyraz wolny	27,7547	1	27,7547	8,0361	0,0114	
n	79,7159	1	79,7159	23,0810	0,0002	37,73
n ²	65,5002	1	65,5002	18,9650	0,0004	31,00
\mathbf{f}_{n}	1,0616	1	1,0616	0,3074	0,5865	0,50
f_n^2	0,0648	1	0,0648	0,0188	0,8926	0,03
KIN	10,1880	1	10,1880	2,9499	0,1040	4,82
KIN ²	27,2062	1	27,2062	7,8773	0,0121	12,88
$n \cdot f_n$	2,3888	1	2,3888	0,6916	0,4171	1,13
n∙KIN	25,1459	1	25,1459	7,2808	0,0152	11,90
f _n ·KIN	0,0018	1	0,0018	0,0005	0,9821	0,00
Błąd	58,7136	17	3,4537			13,08
Łącznie	448,7096	26				100,00

Tabela 54. Analiza statystyczna ANOVA dla parametru Rz otworu wywierconego w stopie aluminium PA6

 $R = 0,9323; R^2 = 0,8692$

Z tabeli 54 wynika, że prędkość obrotowa wrzeciona zdominowała pozostałe parametry wejściowe. Osiągnęła ona wpływ wynoszący 75,25% na parametr Rz. Kolejnym wpływowym parametrem wejściowym był układ kinematyczny 23,65%, nieznaczny wpływ miał posuw na obrót 1,1%.

Tabela 55. Analiza statystyczna ANOVA dla parametru Rt otworu wywierconego w stopie aluminium PA6

w stopie araniniani i rio									
Efekt	SS	DF	MS	F	р	Udział procentowy			
Model	856,9410	9	95,2157	11,4059	0,0000				
Wyraz wolny	0,4089	1	0,4089	0,0490	0,8275				
n	152,2585	1	152,2585	18,2391	0,0005	28,67			
n ²	131,7235	1	131,7235	15,7792	0,0010	24,81			
$\mathbf{f}_{\mathbf{n}}$	65,7530	1	65,7530	7,8766	0,0121	12,38			
f_n^2	72,7459	1	72,7459	8,7142	0,0089	13,70			
KIN	0,0133	1	0,0133	0,0016	0,9686	0,00			
KIN ²	98,6525	1	98,6525	11,8176	0,0031	18,58			

Efekt	SS	DF	MS	F	р	Udział procentowy
$n \cdot f_n$	0,8911	1	0,8911	0,1067	0,7479	0,17
n·KIN	6,3253	1	6,3253	0,7577	0,3962	1,19
f _n ·KIN	2,6327	1	2,6327	0,3154	0,5817	0,50
Błąd	141,9149	17	8,3479			14,21
Łącznie	998,8559	26				100,00

 $R = 0.9262; R^2 = 0.8579$

Z tabeli 55 wynika, że prędkość obrotowa wrzeciona osiągnęła największy wpływ na parametr R_t wynoszący 54,16%. Posuw na obrót wpłynął w 26,41%, reszta przypadła układowi kinematycznemu 19,42%.

Tabela 56. Analiza statystyczna ANOVA dla parametru Ra otworu wywierconego w stopie aluminium PA6

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	17,1637	9	1,9071	23,3909	0,0000	
Wyraz wolny	0,1882	1	0,1882	2,3083	0,1471	
n	0,9704	1	0,9704	11,9027	0,0031	30,20
n ²	0,5931	1	0,5931	7,2746	0,0153	18,46
\mathbf{f}_{n}	0,0022	1	0,0022	0,0275	0,8702	0,07
f_n^2	0,0256	1	0,0256	0,3136	0,5828	0,80
KIN	0,1543	1	0,1543	1,8923	0,1868	4,80
KIN ²	1,2692	1	1,2692	15,5676	0,0010	39,50
$n \cdot f_n$	0,0228	1	0,0228	0,2796	0,6038	0,71
n·KIN	0,0397	1	0,0397	0,4873	0,4946	1,24
$f_n \cdot KIN$	0,1361	1	0,1361	1,6696	0,2136	4,24
Błąd	1,3860	17	0,0815			7,47
Łącznie	18,5497	26				100,00

 $R = 0,9619; R^2 = 0,9253$

Z tabeli 56 wynika, że prędkość obrotowa wrzeciona 49,63% wraz z układem kinematycznym 47,03% zdominowały wpływ na parametr Ra. Reszta przypadła posuwowi na obrót 3,34%.

Tabela 57. Analiza statystyczna ANOVA dla parametru Rz otworu wywierconego w stopie mosiądzu MO58

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	80,9699	9	8,9967	13,6411	0,0000	
Wyraz wolny	0,1183	1	0,1183	0,1793	0,6773	

Efekt	SS	DF	MS	F	р	Udział procentowy
n	9,4218	1	9,4218	14,2857	0,0015	11,01
n ²	10,6375	1	10,6375	16,1291	0,0009	12,43
\mathbf{f}_{n}	1,5397	1	1,5397	2,3346	0,1449	1,80
f_n^2	1,6412	1	1,6412	2,4884	0,1331	1,92
KIN	0,0866	1	0,0866	0,1314	0,7215	0,10
KIN ²	54,9297	1	54,9297	83,2869	0,0000	64,20
$n \cdot f_n$	0,0023	1	0,0023	0,0035	0,9536	0,00
n∙KIN	3,2090	1	3,2090	4,8656	0,0414	3,75
f_n ·KIN	4,0987	1	4,0987	6,2146	0,0233	4,79
Błąd	11,2119	17	0,6595			12,16
Łącznie	92,1818	26				100,00
$D = 0.0272 D^{2}$	0.0704					

 $R = 0,9372; R^2 = 0,8784$

Z tabeli 57 wynika, że wpływ układu kinematycznego był największy w porównaniu z pozostałymi na wartość parametru Rz wykonanego otworu w stopie MO58. Uzyskał on wpływ wynoszący 68,57% na parametr Rz. Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 25,32%. nieznaczny wpływ miał posuw na obrót 6,11%.

Tabela 58. Analiza statystyczna ANOVA dla parametru Rt otworu wywierconego w stopie mosiądzu MO58

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	1221,9442	9	135,7716	8,6749	0,0001	
Wyraz wolny	0,0368	1	0,0368	0,0023	0,9619	
n	212,4057	1	212,4057	13,5714	0,0018	16,11
n ²	181,2734	1	181,2734	11,5822	0,0034	13,75
$\mathbf{f}_{\mathbf{n}}$	74,3834	1	74,3834	4,7526	0,0436	5,64
f_n^2	121,0564	1	121,0564	7,7347	0,0128	9,18
KIN	13,8722	1	13,8722	0,8863	0,3597	1,05
KIN ²	417,9162	1	417,9162	26,7022	0,0001	31,70
$n \cdot f_n$	38,7901	1	38,7901	2,4784	0,1338	2,94
n∙KIN	77,9843	1	77,9843	4,9827	0,0393	5,91
f _n ·KIN	180,7928	1	180,7928	11,5515	0,0034	13,71
Błąd	266,0669	17	15,6510			17,88
Łącznie	1488,0111	26				100,00

$R = 0,9062; R^2 = 0,8212$

Z tabeli 58 wynika, że każdy parametr wejściowy miał duże znaczenie na parametr Rt. Układ kinematyczny 42,56%, prędkość obrotowa wrzeciona 34,29% oraz posuw na obrót 23,15%.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	0,9879	9	0,1098	10,8985	0,0000	
Wyraz wolny	0,0348	1	0,0348	3,4585	0,0803	
n	0,0086	1	0,0086	0,8543	0,3683	1,16
n ²	0,0588	1	0,0588	5,8333	0,0273	7,93
$\mathbf{f}_{\mathbf{n}}$	0,0554	1	0,0554	5,5010	0,0314	7,47
f_n^2	0,0264	1	0,0264	2,6257	0,1235	3,56
KIN	0,1037	1	0,1037	10,2931	0,0052	13,98
KIN ²	0,2918	1	0,2918	28,9677	0,0000	39,34
$n \cdot f_n$	0,0794	1	0,0794	7,8816	0,0121	10,71
n·KIN	0,0085	1	0,0085	0,8398	0,3723	1,15
f _n ·KIN	0,1091	1	0,1091	10,8367	0,0043	14,71
Błąd	0,1712	17	0,0101			14,77
Łącznie	1,1591	26				100,00

Tabela 59. Analiza statystyczna ANOVA dla parametru Ra otworu wywierconego w stopie mosiadzu MO58

 $R = 0,9232; R^2 = 0,8523$

Z tabeli 59 wynika, że układ kinematyczny zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 61,25% na parametr Ra. Kolejnym wpływowym parametrem wejściowym był posuw na obrót 23,74%, reszta przypadła prędkości obrotowej wrzeciona 15,01%.

Tabela 60. Analiza statystyczna ANOVA dla parametru Rz otworu wywierconego w Inconelu 718

w meonetu /18								
Efekt	SS	DF	MS	F	р	Udział procentowy		
Model	35,2646	9	3,9183	11,8139	0,0000			
Wyraz wolny	7,8564	1	7,8564	23,6875	0,0001			
n	1,6095	1	1,6095	4,8528	0,0417	2,79		
n ²	1,6453	1	1,6453	4,9608	0,0397	2,86		
$\mathbf{f}_{\mathbf{n}}$	23,3127	1	23,3127	70,2894	0,0000	40,47		
f_n^2	28,5260	1	28,5260	86,0081	0,0000	49,52		
KIN	0,9235	1	0,9235	2,7843	0,1135	1,60		

Efekt	SS	DF	MS	F	р	Udział procentowy
KIN ²	0,0001	1	0,0001	0,0002	0,9886	0,00
$n \cdot f_n$	0,1428	1	0,1428	0,4306	0,5205	0,25
n·KIN	0,1179	1	0,1179	0,3555	0,5589	0,20
f _n ·KIN	1,3275	1	1,3275	4,0026	0,0617	2,30
Błąd	5,6383	17	0,3317			13,78
Łącznie	40,9029	26				100,00

 $R = 0,9285; R^2 = 0,8622$

Z tabeli 60 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 91,27%% na parametr Rz. Reszta przypadła prędkości obrotowej wrzeciona 5,88% oraz układowi kinematycznemu 2,86%.

Tabela 61. Analiza statystyczna ANOVA dla parametru Rt otworu wywierconego w Inconelu 718

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	68,8560	9	7,6507	11,8608	0,0000	
Wyraz wolny	21,0740	1	21,0740	32,6709	0,0000	
n	0,5127	1	0,5127	0,7948	0,3851	0,50
n ²	0,4134	1	0,4134	0,6409	0,4344	0,40
\mathbf{f}_{n}	43,8694	1	43,8694	68,0104	0,0000	42,59
f_n^2	53,9700	1	53,9700	83,6694	0,0000	52,39
KIN	1,2561	1	1,2561	1,9473	0,1808	1,22
KIN ²	1,6956	1	1,6956	2,6286	0,1234	1,65
$n \cdot f_n$	0,4266	1	0,4266	0,6614	0,4273	0,41
n·KIN	0,3945	1	0,3945	0,6116	0,4449	0,38
f _n ·KIN	0,4768	1	0,4768	0,7392	0,4019	0,46
Błąd	10,9657	17	0,6450			13,74
Łącznie	79,8216	26				100,00

 $R = 0,9288; R^2 = 0,8626$

Z tabeli 61 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 95,41% na parametr Rt. Reszta przypadła pozostałym parametrom wejściowym.

Efekt	SS	DF	MS	F	р	Udział procentowy
Model	0,8015	9	0,0891	4,3502	0,0045	
Wyraz wolny	0,1901	1	0,1901	9,2880	0,0073	
n	0,0047	1	0,0047	0,2290	0,6381	0,44
n ²	0,0010	1	0,0010	0,0470	0,8317	0,09
\mathbf{f}_{n}	0,3812	1	0,3812	18,6240	0,0005	35,73
f_n^2	0,5396	1	0,5396	26,3600	0,0001	50,57
KIN	0,0444	1	0,0444	2,1680	0,1592	4,16
KIN ²	0,0245	1	0,0245	1,1960	0,2894	2,30
$n \cdot f_n$	0,0285	1	0,0285	1,3930	0,2542	2,67
n·KIN	0,0186	1	0,0186	0,9090	0,3539	1,74
f _n ·KIN	0,0245	1	0,0245	1,1980	0,2890	2,30
Błąd	0,3480	17	0,0205			30,27
Łącznie	1,1495	26				100,00

Tabela 62. Analiza statystyczna ANOVA dla parametru Ra otworu wywierconego w Inconelu 718

 $R = 0,8350; R^2 = 0,6973$

Z tabeli 62 wynika, że znów posuw na obrót zdominował pozostałe parametry wejściowe. Uzyskał on wpływ wynoszący 88,78% na parametr Ra.

Z tabel 48-62 nasuwa się wniosek, że poniższe modele są istotne gdyż wartości p są mniejsze niż 0,05.

Stosując równanie hybrydowe (39) zbudowano modele matematyczne dla następujących parametrów chropowatości powierzchni: Rz, Rt oraz Ra dla każdego badanego materiału. Poniżej zapisano równania dotyczące każdego wyżej wymienionego parametru oraz badanych materiałów.

$$Rz_{C45} = -41,13 + 1,14 \cdot 10^{-2} \cdot n - 1,16 \cdot 10^{-6} \cdot n^{2} + +372,5 \cdot f_{n} - 1376,6 \cdot f_{n}^{2} + 1,84 \cdot 10^{-4} \cdot KIN + -1,36 \cdot 10^{-9} \cdot KIN^{2} - 0,14 \cdot n \cdot f_{n} - 6,1 \cdot 10^{-8} \cdot n \cdot KIN + +6,27 \cdot 10^{-4} \cdot f_{n} \cdot KIN$$

$$(60)$$

$$Rt_{C45} = -90,38 + 1,27 \cdot 10^{-2} \cdot n - 6,3 \cdot 10^{-7} \cdot n^{2} + +1181,72 \cdot f_{n} - 4029,58 \cdot f_{n}^{2} + 1,34 \cdot 10^{-4} \cdot KIN + +7,35 \cdot 10^{-9} \cdot KIN^{2} - 5,82 \cdot 10^{-2} \cdot n \cdot f_{n} - 3,24 \cdot 10^{-7} \cdot n \cdot KIN + +9,14 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$

$$(61)$$

$$\begin{aligned} Ra_{C45} &= -3,3 + 1,12 \cdot 10^{-3} \cdot n - 1,03 \cdot 10^{-7} \cdot n^2 + 24,35 \cdot f_n + \\ &-69,86 \cdot f_n^{-2} - 2,35 \cdot 10^{-5} \cdot KIN - 5,56 \cdot 10^{-9} \cdot KIN^2 + \\ &-1,94 \cdot 10^{-3} \cdot n \cdot f_n + 1,58 \cdot 10^{-9} \cdot n \cdot KIN + 8,93 \cdot 10^{-5} \cdot f_n \cdot KIN \\ Rz_{40HM} &= -12,34 + 1,14 \cdot 10^{-3} \cdot n - 1,34 \cdot 10^{-7} \cdot n^2 + \\ &+ 201,35 \cdot f_n - 785,69 \cdot f_n^{-2} - 3,71 \cdot 10^{-5} \cdot KIN + \\ &-4,78 \cdot 10^{-10} \cdot KIN^2 - 2,89 \cdot 10^{-3} \cdot n \cdot f_n + 1,22 \cdot 10^{-8} \cdot n \cdot KIN + \\ &+ 9,73 \cdot 10^{-5} \cdot f_n \cdot KIN \end{aligned}$$

$$\begin{aligned} Rt_{40HM} &= -10,44 + 4,52 \cdot 10^{-3} \cdot n - 4,31 \cdot 10^{-7} \cdot n^2 + \\ &+ 111,22 \cdot f_n - 342,91 \cdot f_n^{-2} + 3,77 \cdot 10^{-4} \cdot KIN + \\ &- 1,42 \cdot 10^{-8} \cdot KIN^2 - 9,84 \cdot 10^{-3} \cdot n \cdot f_n - 4,99 \cdot 10^{-8} \cdot n \cdot KIN + \\ &- 1,83 \cdot 10^{-3} \cdot n \cdot f_n - 4,99 \cdot 10^{-8} \cdot n \cdot KIN + \\ &- 1,83 \cdot 10^{-3} \cdot n \cdot f_n - 1,23 \cdot 10^{-9} \cdot n \cdot KIN + \\ &+ 3,51 \cdot 10^{-10} \cdot KIN^2 + 2,09 \cdot 10^{-4} \cdot n \cdot f_n - 1,23 \cdot 10^{-9} \cdot n \cdot KIN + \\ &+ 2,45 \cdot 10^{-6} \cdot f_n \cdot KIN \end{aligned}$$

$$\begin{aligned} Rz_{PA6} &= -103,37 + 4,98 \cdot 10^{-2} \cdot n - 5,21 \cdot 10^{-6} \cdot n^2 + \\ &+ 263,37 \cdot f_n - 259,86 \cdot f_n^2 + 1,87 \cdot 10^{-3} \cdot KIN + \\ &- 1,25 \cdot 10^{-7} \cdot KIN^2 - 2,8 \cdot 10^{-2} \cdot n \cdot f_n - 4,72 \cdot 10^{-7} \cdot n \cdot KIN + \\ &+ 1,51 \cdot 10^{-4} \cdot f_n \cdot KIN \end{aligned}$$

$$\begin{aligned} Rt_{PA6} &= 12,54 + 6,88 \cdot 10^{-2} \cdot n - 7,39 \cdot 10^{-6} \cdot n^2 + \\ &- 2072,82 \cdot f_n + 8704,99 \cdot f_n^2 - 6,75 \cdot 10^{-5} \cdot KIN + \\ &- 2,38 \cdot 10^{-7} \cdot KIN^2 - 1,71 \cdot 10^{-2} \cdot n \cdot f_n + 2,37 \cdot 10^{-7} \cdot n \cdot KIN + \\ &- 5,8 \cdot 10^{-3} \cdot n \cdot f_n + 1,88 \cdot 10^{-8} \cdot n \cdot KIN + 1,32 \cdot 10^{-3} \cdot f_n \cdot KIN \end{aligned}$$

$$\begin{aligned} Ra_{PA6} &= -8,51 + 5,49 \cdot 10^{-3} \cdot n - 4,96 \cdot 10^{-7} \cdot n^2 - 12,1 \cdot f_n + \\ &+ 163,19 \cdot f_n^2 - 2,3 \cdot 10^{-4} \cdot KIN - 2,7 \cdot 10^{-8} \cdot KIN^2 + \\ &- 2,73 \cdot 10^{-3} \cdot n \cdot f_n + 1,88 \cdot 10^{-8} \cdot n \cdot KIN + 1,32 \cdot 10^{-3} \cdot f_n \cdot KIN + \\ &- 317,19 \cdot f_n + 1307,5 \cdot f_n^2 + 1,72 \cdot 10^{-4} \cdot KIN + \\ &- 317,19 \cdot f_n + 1307,5 \cdot f_n^2 + 1,72 \cdot 10^{-4} \cdot KIN + \\ &- 317,19 \cdot f_n + 1307,5 \cdot f_n^2 + 1,72 \cdot 10^{-4} \cdot KIN + \\ &- 317,19 \cdot f_n + 1307,5 \cdot f_n^2 + 1,72 \cdot 10^{-4} \cdot KIN + \\ &- 317,19 \cdot f_n + 1307,5 \cdot f_n^2 + 1,72 \cdot 10^{-4} \cdot KIN + \\ &- 317,19 \cdot f_n$$

 $-7,24 \cdot 10^{-3} \cdot f_n \cdot KIN$

$$Rt_{M058} = -3.76 + 8.12 \cdot 10^{-2} \cdot n - 8.67 \cdot 10^{-6} \cdot n^{2} + -2204.66 \cdot f_{n} + 11229.44 \cdot f_{n}^{2} + 2.18 \cdot 10^{-3} \cdot KIN + -4.89 \cdot 10^{-7} \cdot KIN^{2} - 1.12 \cdot 10^{-1} \cdot n \cdot f_{n} + 8.32 \cdot 10^{-7} \cdot n \cdot KIN + -4.81 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(70)$$

$$Ra_{M058} = 3,66 + 5,17 \cdot 10^{-4} \cdot n - 1,56 \cdot 10^{-7} \cdot n^{2} + -60,16 \cdot f_{n} \cdot 165,97 \cdot f_{n}^{2} + 1,88 \cdot 10^{-4} \cdot KIN - 1,29 \cdot 10^{-8} \cdot KIN^{2} + +5,1 \cdot 10^{-3} \cdot n \cdot f_{n} - 8,66 \cdot 10^{-9} \cdot n \cdot KIN - 1,18 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$
(71)

$$Rz_{I718} = 44,57 + 3,46 \cdot 10^{-2} \cdot n - 2,07 \cdot 10^{-5} \cdot n^{2} + -1396,31 \cdot f_{n} + 9690,86 \cdot f_{n}^{2} + 2,58 \cdot 10^{-3} \cdot KIN + -4,96 \cdot 10^{-9} \cdot KIN^{2} - 4,57 \cdot 10^{-2} \cdot n \cdot f_{n} - 8,12 \cdot 10^{-7} \cdot n \cdot KIN + -2,74 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(72)$$

$$Rt_{I718} = 73 + 1,95 \cdot 10^{-2} \cdot n - 1,03 \cdot 10^{-5} \cdot n^{2} + -1915,44 \cdot f_{n} + 13329,62 \cdot f_{n}^{2} + 3 \cdot 10^{-3} \cdot KIN + -7,76 \cdot 10^{-7} \cdot KIN^{2} - 7,9 \cdot 10^{-2} \cdot n \cdot f_{n} - 1,48 \cdot 10^{-6} \cdot n \cdot KIN + -1,64 \cdot 10^{-2} \cdot f_{n} \cdot KIN$$

$$(73)$$

$$Ra_{I718} = 6,93 + 1,87 \cdot 10^{-3} \cdot n - 4,99 \cdot 10^{-7} \cdot n^{2} + -178,55 \cdot f_{n} + 1332,83 \cdot f_{n}^{2}5,65 \cdot 10^{-4} \cdot KIN + +9,32 \cdot 10^{-8} \cdot KIN^{2} + 2,04 \cdot 10^{-2} \cdot n \cdot f_{n} - 3,22 \cdot 10^{-7} \cdot n \cdot KIN + -3,73 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$
(74)

gdzie: n – wartość prędkości obrotowej wrzeciona, f_n – wartość posuwu na obrót, KIN – układ kinematyczny, $n \cdot f_n$ – interakcja wartości prędkości obrotowej wrzeciona z wartością posuwu na obrót, $n \cdot KIN$ – interakcja wartości prędkości obrotowej wrzeciona z układem kinematycznym, $f_n \cdot KIN$ – interakcja wartości posuwu na obrót z układem kinematycznym.

W tabelach poniżej zestawiono wartości wyników metrologicznych z przewidywanymi wynikami. Wartości są bardzo zbliżone do siebie (różnią się od siebie dziesiętnymi częściami mikrometra) co wskazuje na dokładność modeli. Dla stali C45 wartości błędów względnych były następujące: dla Rz 5%, dla Rt 4% oraz dla Ra 5%. Dla stali ulepszonej cieplnie 40HM+QT wartości błędów względnych były następujące: dla Rz 2%, dla Rt 4% oraz dla Ra 3%. Dla stopu aluminium PA6 wartości błędów względnych były następujące: dla Rz 5%, dla Rt 6% oraz dla Ra 4%. Dla stopu mosiądzu MO58 wartości błędów względnych były następujące: dla Rz 10%, dla Rt 12% oraz dla Ra 8%. Dla Inconelu 718 wartości błędów względnych były następujące: dla Rz 2%, dla Rt 3% oraz dla Ra 3%.

	Eksper	ymentalne	wyniki	Przewidywane wyniki			
Kodowanie	Rz, µm	Rt, μm	Ra, µm	Rz, µm	Rt, μm	Ra, µm	
TiI1S	2,167	3,316	0,334	2,289	3,048	0,333	
TiII1S	2,416	4,328	0,374	2,468	4,329	0,367	
TiII11S	2,358	3,048	0,422	2,410	3,521	0,477	
TiI2S	2,918	4,882	0,430	3,121	4,887	0,408	
TiII2S	2,846	3,810	0,450	2,884	3,899	0,446	
TiIII2S	3,435	4,990	0,583	3,024	4,276	0,515	
TiI3S	2,393	5,048	0,347	2,403	5,525	0,347	
TiII3S	1,823	2,858	0,338	1,905	3,091	0,385	
TiIII3S	2,316	4,529	0,422	2,168	4,233	0,422	
TiI4S	3,834	4,949	0,356	3,352	5,053	0,386	
TiII4S	3,717	8,392	0,491	3,651	8,081	0,437	
TiIII4S	3,441	6,296	0,540	3,532	6,399	0,538	
TiI5S	4,064	5,988	0,436	3,958	6,110	0,432	
TiII5S	3,764	6,139	0,458	3,821	6,578	0,484	
TiIII5S	3,513	6,168	0,514	3,911	6,228	0,546	
TiI6S	2,894	5,933	0,350	3,014	5,967	0,341	
TiII6S	2,820	4,969	0,429	2,595	4,698	0,391	
TiIII6S	2,605	5,538	0,402	2,818	5,258	0,422	
TiI7S	2,846	3,949	0,414	3,313	3,833	0,383	
TiII7S	3,633	8,808	0,391	3,732	8,609	0,451	
TiIII7S	3,889	5,842	0,594	3,554	6,054	0,544	
TiI8S	3,916	4,078	0,369	3,693	4,110	0,399	
TiII8S	3,819	5,857	0,481	3,656	6,034	0,466	
TiIII8S	3,489	5,166	0,495	3,696	4,956	0,521	
TiI9S	2,701	3,314	0,274	2,524	3,186	0,279	
TiII9S	2,124	3,002	0,354	2,185	3,081	0,340	
Till19S	2,303	2,906	0,377	2,368	3,059	0,366	

Tabela 63. Wyniki badań wartości eksperymentalnych oraz przewidywanych chropowatości powierzchni dla stali C45

	Eksper	ymentalne	wyniki	Przewidywane wyniki			
Kodowanie	Rz, µm	Rt, µm	Ra, µm	Rz, µm	Rt, µm	Ra, µm	
TiI1Q	2,598	2,222	0,506	2,540	2,708	0,500	
TiII1Q	2,27	3,698	0,452	2,206	3,830	0,429	
TiIII1Q	2,375	3,806	0,447	2,384	3,592	0,456	
TiI2Q	2,685	3,835	0,485	2,578	3,560	0,507	
TiII2Q	2,297	4,138	0,412	2,377	4,179	0,440	
TiIII2Q	2,415	4,336	0,474	2,485	4,094	0,468	
TiI3Q	2,306	3,711	0,462	2,461	3,784	0,469	
TiII3Q	2,359	3,822	0,437	2,363	4,026	0,409	
TiIII3Q	2,505	4,254	0,438	2,417	4,049	0,435	
TiI4Q	2,765	3,594	0,527	2,866	3,381	0,503	
TiII4Q	2,602	4,38	0,402	2,551	4,153	0,432	
TiIII4Q	2,572	4,003	0,466	2,719	4,090	0,459	
TiI5Q	2,897	3,987	0,532	2,859	4,048	0,513	
TiII5Q	2,579	4,254	0,455	2,675	4,375	0,447	
TiIII5Q	2,859	4,574	0,453	2,775	4,436	0,474	
TiI6Q	2,734	4,054	0,49	2,698	4,086	0,479	
TiII6Q	2,736	4,107	0,417	2,612	4,095	0,419	
TiIII6Q	2,67	3,945	0,429	2,660	4,234	0,445	
TiI7Q	2,571	3,924	0,405	2,563	3,781	0,447	
TiII7Q	2,213	4,215	0,391	2,267	4,202	0,376	
TiIII7Q	2,556	4,209	0,41	2,426	4,314	0,404	
TiI8Q	2,47	4,277	0,478	2,513	4,261	0,461	
TiII8Q	2,391	4,116	0,381	2,343	4,296	0,394	
TiIII8Q	2,447	4,235	0,456	2,435	4,503	0,422	
TiI9Q	2,344	4,152	0,429	2,306	4,114	0,429	
TiII9Q	2,175	4,371	0,377	2,233	3,889	0,370	
TiIII9Q	2,194	4,006	0,372	2,274	4,145	0,396	

Tabela 64. Wyniki badań wartości eksperymentalnych oraz przewidywanych chrop<u>owatości powierzchni dla stali ulepszonej cieplnie 40HM+QT</u>

	Eksper	ymentalne	wyniki	Przewidywane wyniki			
Kodowanie	Rz, µm	Rt, μm	Ra, µm	Rz, μm	Rt, μm	Ra, µm	
TiI1A	23,523	38,314	5,479	23,956	37,298	5,678	
TiII1A	25,445	33,726	5,291	27,430	34,906	5,255	
TiIII1A	30,828	43,652	6,199	28,539	41,521	6,081	
TiI2A	27,802	36,992	5,52	26,440	36,670	5,161	
TiII2A	24,773	34,878	4,658	26,343	36,177	4,927	
TiIII2A	28,626	39,026	5,528	28,367	40,186	5,471	
TiI3A	21,675	25,554	3,726	21,556	26,667	4,005	
TiII3A	19,927	29,746	3,959	19,085	27,473	3,913	
TiIII3A	20,702	28,488	4,364	21,585	29,478	4,232	
TiI4A	22,625	34,135	5,202	22,701	35,678	5,207	
TiII4A	29,388	32,59	5,285	26,205	32,176	5,036	
TiIII4A	24,607	40,6	5,252	27,299	39,346	5,736	
TiI5A	23,477	31,389	4,87	24,741	34,685	4,668	
TiII5A	26,356	30,943	4,315	24,669	33,267	4,644	
TiIII5A	25,842	39,52	5,579	26,681	37,739	5,083	
TiI6A	19,096	28,126	3,263	19,415	24,317	3,489	
TiII6A	18,606	27,91	3,832	16,963	24,383	3,565	
TiIII6A	18,13	23,137	3,629	19,453	26,758	3,800	
TiI7A	20,329	39,492	4,891	21,239	41,022	4,867	
TiII7A	22,908	34,79	5,072	24,772	36,411	4,948	
TiIII7A	28,34	45,196	5,659	25,851	44,136	5,522	
TiI8A	23,987	42,561	4,278	22,836	39,664	4,305	
TiII8A	22,11	41,657	4,205	22,787	37,322	4,491	
TiIII8A	24,677	41	4,621	24,787	42,256	4,825	
TiI9A	18,507	30,985	3,18	17,065	28,931	3,103	
TiII9A	14,519	26,716	3,492	14,632	28,258	3,347	
TiIII9A	15,705	26,603	3,507	17,113	31,002	3,498	

Tabela 65. Wyniki badań wartości eksperymentalnych oraz przewidywanych chropowatości powierzchni dla stopu aluminium PA6

	Eksper	ymentalne	wyniki	Przewidywane wyniki			
Kodowanie	Rz, μm	Rt, μm	Ra, µm	Rz, μm	Rt, μm	Ra, µm	
TiI1M	3,88	11,894	0,474	3,499	8,564	0,434	
TiII1M	4,683	13,218	0,59	3,847	14,142	0,608	
TiII11M	6,922	16,953	0,815	7,717	22,507	0,815	
TiI2M	5,262	19,382	0,62	5,346	18,146	0,673	
TiII2M	6,95	35,818	0,767	6,704	28,063	0,763	
TiIII2M	8,622	30,988	0,9	8,833	30,850	0,923	
TiI3M	4,328	17,363	0,633	4,517	17,165	0,687	
TiII3M	6,095	25,824	0,797	6,459	29,314	0,716	
TiIII3M	7,465	25,508	0,855	7,285	28,196	0,832	
TiI4M	4,029	8,759	0,414	3,819	9,647	0,399	
TiII4M	2,756	5,851	0,34	2,783	6,030	0,347	
TiIII4M	6,746	22,877	0,694	7,345	18,992	0,668	
TiI5M	5,956	12,838	0,642	5,536	16,664	0,701	
TiII5M	5,067	14,36	0,556	5,741	18,920	0,603	
TiIII5M	7,943	22,625	0,951	8,447	25,537	0,857	
TiI6M	5,345	12,556	0,98	4,579	13,119	0,778	
TiII6M	6,246	22,273	0,639	5,598	19,140	0,655	
TiIII6M	6,645	26,997	0,639	6,885	21,086	0,847	
TiI7M	4,291	16,955	0,401	5,185	19,713	0,497	
TiII7M	1,819	7,919	0,192	2,764	6,902	0,220	
TiIII7M	9,852	26,534	0,721	8,019	24,462	0,653	
TiI8M	7,112	28,238	0,981	6,773	24,166	0,862	
TiII8M	6,524	16,498	0,656	5,825	18,761	0,575	
TiIII8M	8,876	29,569	0,807	9,107	29,208	0,923	
TiI9M	4,739	16,818	0,932	5,686	18,057	1,001	
TiII9M	5,381	17,045	0,724	5,783	17,948	0,728	
TiIII9M	8,079	22,6	1,04	7,531	22,959	0,995	

Tabela 66. Wyniki badań wartości eksperymentalnych oraz przewidywanych chropowatości powierzchni dla stopu mosiądzu MO58

	Eksper	ymentalne	wyniki	Przew	Przewidywane wyniki			
Kodowanie	Rz, µm	Rt, µm	Ra, µm	Rz, μm	Rt, μm	Ra, µm		
TiI1I	6,796	9,794	1,272	6,718	9,491	1,228		
TiII1I	4,766	6,297	0,727	4,975	6,088	0,737		
TiII11	5,609	8,383	0,837	5,686	8,369	0,863		
TiI2I	6,047	9,609	1,282	6,182	9,506	1,225		
TiII2I	5,917	6,923	1,061	5,540	7,369	0,985		
TiIII2I	5,719	8,586	0,976	5,749	8,840	1,022		
TiI3I	5,197	7,949	1,052	5,464	8,121	1,097		
TiII3I	5,579	6,937	0,996	5,599	6,970	1,042		
TiIII3I	5,744	8,078	1,012	5,460	7,803	1,016		
TiI4I	8,462	10,978	1,314	8,250	11,615	1,402		
TiII4I	7,53	10,002	1,179	7,698	9,839	1,186		
TiIII4I	8,169	11,318	1,217	7,813	11,307	1,174		
TiI5I	7,424	11,49	1,317	7,554	11,512	1,334		
TiII5I	7,843	11,01	1,302	7,904	10,731	1,324		
TiIII5I	7,42	11,282	1,183	7,617	11,524	1,246		
TiI6I	6,74	10,131	1,182	6,676	10,010	1,141		
TiII6I	7,236	9,864	1,311	7,604	9,944	1,270		
TiIII6I	7,36	10,642	1,224	7,068	10,235	1,152		
TiI7I	8,532	12,483	1,53	8,540	11,683	1,504		
TiII7I	9,654	11,23	1,544	9,178	11,534	1,564		
TiIII7I	8,039	11,63	1,452	8,698	12,189	1,414		
TiI8I	7,682	10,852	1,373	7,683	11,464	1,371		
TiII8I	8,88	12,629	1,628	9,025	12,038	1,592		
TiIII8I	8,564	12,756	1,375	8,242	12,153	1,398		
TiI9I	6,631	9,677	1,092	6,645	9,844	1,114		
TiII9I	8,263	10,16	1,375	8,366	10,863	1,426		
TiIII9I	7,567	10,963	1,23	7,434	10,611	1,217		

Tabela 67. Wyniki badań wartości eksperymentalnych oraz przewidywanych chropowatości powierzchni dla Inconelu 718

Na rys. 63-67 przedstawiono średnie wartości parametrów chropowatości powierzchni (Rz, Rt, Ra) w stosunku do badanych parametrów wejściowych (n, f_n oraz KIN) dla stali C45, stali ulepszonej cieplnie 40HM+QT, stopu aluminium PA6, stopu mosiądzu MO58 oraz Inconelu 718.

Rys. 77. Wykresy efektów głównych parametru Rz otworu dla stali C45

Z danych przedstawionych na rys. 77 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Rz wynoszącą 2,442 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rz na poziomie (Rz = 2,519 μ m) jest 0,14 mm/obr. Wykorzystując w procesie wiercenia stali C45 układ kinematyczny drugi, uzyskano najmniejszą wartość parametru Rz wynoszącą 2,996 μ m.

Rys. 78. Wykresy efektów głównych parametru Rt otworu dla stali C45

Z rys. 78 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Rt wynoszącą 4,233 µm. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rt na poziomie (Rt = 4,090 µm) jest 0,14 mm/obr. Wykorzystując układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Rt wynoszącą 4,606 µm. Zauważono, że spadek wartości prędkości obrotowej wrzeciona powoduje zmniejszenie wartości parametru Rt.

Rys. 79. Wykresy efektów głównych parametru Ra otworu dla stali C45

Z danych przedstawionych na rys. 79 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Ra wynoszącą 0,366 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Ra na poziomie (Ra = 0,411 μ m) jest 0,14 mm/obr. Wykorzystując w procesie wiercenia stali C45 układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Ra wynoszącą 0,368 μ m.

Rys. 80. Wykresy efektów głównych parametru Rz otworu dla stali ulepszonej cieplnie 40HM+QT

Z rys. 80 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Rz wynoszącą 2,447 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rz na poziomie (Rz = 2,373 μ m) jest 0,1 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny drugi, uzyskano najmniejszą wartość parametru Rz wynoszącą 2,402 μ m.

Rys. 81. Wykresy efektów głównych parametru Rt otworu dla stali ulepszonej cieplnie 40HM+QT

Z danych przedstawionych na rys. 81 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość parametru Rt wynoszącą 3,783 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rt na poziomie (Rt = 3,758 μ m) jest 0,14 mm/obr. Wykorzystując w procesie wiercenia stali ulepszonej cieplnie 40HM+QT układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Rt wynoszącą 3,751 μ m. Zauważono, że zmniejszenie wartości posuwu na obrót powoduje zmniejszenie wartości parametru Rt.

Rys. 82. Wykresy efektów głównych parametru Ra otworu dla stali ulepszonej cieplnie 40HM+QT

Z rys. 82 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Ra wynoszącą 0,428 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Ra na poziomie (Ra = 0,411 μ m) jest 0,1 mm/obr. Wykorzystując układ

kinematyczny drugi, uzyskano najmniejszą wartość parametru Ra wynoszącą 0,414 µm.

Rys. 83. Wykresy efektów głównych parametru Rz otworu dla stopu aluminium PA6

Z danych przedstawionych na rys. 83 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Rz wynoszącą 18,541 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rz na poziomie (Rz = 21,23 μ m) jest 0,1 mm/obr. Wykorzystując w procesie wiercenia stopu aluminium PA6 układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Rz wynoszącą 22,336 μ m. Zauważono, że zmniejszenie parametrów technologicznych powoduje zmniejszenie wartości parametru Rz.

Rys. 84. Wykresy efektów głównych parametru Rt otworu dla stopu aluminium PA6

Z rys. 84 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Rt wynoszącą 27,474 μm. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rt na poziomie (Rt = 32,039μm) jest 0,12 mm/obr. Wykorzystując w

procesie wiercenia układ kinematyczny drugi, uzyskano najmniejszą wartość parametru Rt wynoszącą 32,551 µm. Zauważono, że zmniejszenie wartości prędkości obrotowej wrzeciona powoduje zmniejszenie wartości parametru Rt.

Rys. 85. Wykresy efektów głównych parametru Ra otworu dla stopu aluminium PA6

Z danych przedstawionych na rys. 85 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość parametru Ra wynoszącą 3,661 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Ra na poziomie (Ra = 4,323 μ m) jest 0,1 mm/obr. Wykorzystując układ kinematyczny drugi, uzyskano najmniejszą wartość parametru Ra wynoszącą 4,457 μ m. Zauważono, że zmniejszenie wartości parametrów technologicznych powoduje zmniejszenie wartości parametru Ra.

Rys. 86. Wykresy efektów głównych parametru Rz otworu dla stopu mosiądzu MO58

Z rys. 86 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość parametru Rz wynoszącą 4,998 μm. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość

parametru Rz na poziomie (Rz = 5,637 μ m) jest 0,12 mm/obr. Wykorzystując w procesie wiercenia stopu mosiądzu MO58 układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Rz wynoszącą 4,994 μ m.

Rys. 87. Wykresy efektów głównych parametru Rtotworu dla stopu mosiądzu MO58

Z danych przedstawionych na rys. 87 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość parametru Rt wynoszącą 14,551 μ m. Najkorzystniejszą wartością posuwu na obrót dla której, uzyskano wartość parametru Rt na poziomie (Rt = 16,571 μ m) jest 0,12 mm/obr. Wykorzystując układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Rt wynoszącą 16,089 μ m.

Rys. 88. Wykresy efektów głównych parametru Ra otworu dla stopu mosiądzu MO58

Z rys. 88 wynika, że stosując prędkość obrotową wynoszącą 4775 obr/min, uzyskano najmniejszą wartość parametru Ra wynoszącą 0,516 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Ra na poziomie (Ra = 0,651 μ m) jest 0,12 mm/obr. Wykorzystując w

procesie wiercenia układ kinematyczny drugi, uzyskano najmniejszą wartość parametru Ra wynoszącą 0,585 µm. Zauważono, że wzrost wartości prędkości obrotowej wrzeciona powoduje zmniejszenie wartości parametru Ra.

Rys. 89. Wykresy efektów głównych parametru Rz otworu dla Inconelu 718

Z rys. 89 wynika, że stosując prędkość obrotową wynoszącą 955 obr/min, uzyskano najmniejszą wartość parametru Rz wynoszącą 6,702 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rz na poziomie (Rz = 5,708 μ m) jest 0,075 mm/obr. Wykorzystując w procesie wiercenia Inconelu 718 układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Rz wynoszącą 7,057 μ m.

Rys. 90. Wykresy efektów głównych parametru Rt otworu dla Inconelu 718

Z danych przedstawionych na rys. 90 wynika, że stosując prędkość obrotową wynoszącą 955 obr/min, uzyskano najmniejszą wartość parametru Rt wynoszącą 9,378 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Rt na poziomie (Rt = 8,062 μ m) jest 0,075 mm/obr.

Wykorzystując w procesie wiercenia układ kinematyczny pierwszy, uzyskano najmniejszą wartość parametru Rt wynoszącą 9,450 µm.

Rys. 91. Wykresy efektów głównych parametru Ra otworu dla Inconelu 718

Z rys. 91 wynika, że stosując prędkość obrotową wynoszącą 955 obr/min, uzyskano najmniejszą wartość parametru Ra wynoszącą 1,164 µm. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość parametru Ra na poziomie (Ra = 1,024 µm) jest 0,075 mm/obr. Wykorzystując układ kinematyczny drugi, uzyskano najmniejszą wartość parametru Ra wynoszącą 1,167 µm. Zauważono, że zmniejszenie wartości prędkości obrotowej wrzeciona powoduje zmniejszenie wartości parametru Ra.

Wnioski:

- 1. Zbudowane empiryczne modele matematyczne cechują się bardzo dużą korelacją w stosunku do obszernych badań dla stali C45: parametr Rz $R^2 = 89,03\%$, parametr Rt $R^2 = 96,88\%$, parametr Ra $R^2 = 82,95\%$. Dla stali ulepszonej cieplnie 40HM+QT: parametr Rz $R^2 = 84,38\%$, parametr Rt $R^2 = 75,99\%$, parametr Ra $R^2 = 79,71\%$. Dla stopu aluminium PA6: parametr Rz $R^2 = 86,92\%$, parametr Rt $R^2 = 85,79\%$, parametr Ra $R^2 = 92,53\%$. Dla mosiądzu MO58: parametr Rz $R^2 = 87,84\%$, parametr Rt $R^2 = 85,23\%$. Dla Inconelu 718: odchyłka walcowości parametr Rz $R^2 = 86,22\%$, parametr Rt $R^2 = 86,26\%$, parametr Ra $R^2 = 69,73\%$.
- 2. Zbudowane modele matematyczne są istotne ze względu na to, że wartości poziomu istotności p są mniejsze niż 0,05.
- 3. Wysokie wartości współczynnika determinacji zbliżone do 1, powoduje dobre dopasowanie przewidywanych wartości z eksperymentalnymi wynikami.
- 4. Układ kinematyczny miał decydujący wpływ na chropowatość powierzchni obrobionych otworów ocenianą następującymi parametrami: dla stali C45 w parametrze Ra 37,76%, dla stali ulepszonej cieplnie 40HM+QT w parametrze Rt 47,03%, dla stopu aluminium PA6 w parametrze Ra 47,03%, dla stopu

mosiądzu MO58 w parametrze Rz 68,57%, w parametrze Rt 42,57% oraz w parametrze Ra 61,25%.

5. Zastosowanie układu kinematycznego procesu wiercenia zależy od materiału. W stali ulepszonej cieplnie 40HM+QT oraz stopie aluminium stosując obróbkę według układu kinematycznego drugiego, uzyskano 2 z 3 parametrów chropowatości powierzchni na najmniejszym poziomie. Dla stali C45, stopu mosiądzu MO58 oraz Inconelu 718 stosując układ kinematyczny KIN I, uzyskano 2 z 3 parametrów o najmniejszych wartościach, pod tym względem układ ten okazał się najlepszy.

5.2.3. Badania symulacyjne wybranych modeli

W niniejszym podrozdziale zostaną przedstawione wyniki symulacyjnych badań zbudowanych modeli do przewidywania trzech parametrów chropowatości powierzchni. Wybrano modele w których to analiza statystyczna wykazała duży wpływ układu kinematycznego na parametry wyjściowe. Na rys. 92-109 przedstawiono badania opracowane na podstawie wzorów (62), (64), (68), (69), (70) oraz (71).

Rys. 92. Wpływ parametrów technologicznych w pierwszej kinematyce na parametr Ra otworu w stali C45 na podstawie równania (62)

Analizując rys. 92 dla pierwszego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz najmniejsza wartość prędkości obrotowej wrzeciona 3183 obr/min, uzyskano najmniejszą wartość parametru Ra.

Rys. 93. Wpływ parametrów technologicznych w drugiej kinematyce na parametr Ra otworu w stali C45 na podstawie równania (62)

Analizując rys. 93 dla drugiego układu kinematycznego zauważono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą parametru Ra. Małe wartości parametru Ra, uzyskano stosując największą wartość posuwu na obrót 0,14 mm/obr oraz prędkość obrotową wrzeciona wynoszącą 3183 obr/min lub 4775 obr/min.

Rys. 94. Wpływ parametrów technologicznych w trzeciej kinematyce na parametr Ra otworu w stali C45 na podstawie równania (62)

Analizując rys. 94 dla trzeciego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz najmniejszą wartość prędkości obrotowej wrzeciona 3183 obr/min, uzyskano najmniejszą wartość parametru Ra. Zwiększenie posuwu na obrót przy zachowaniu najmniejszej wartości prędkości obrotowej wrzeciona pozwala również uzyskać małą wartość parametru Ra.

Rys. 95. Wpływ parametrów technologicznych w pierwszej kinematyce na parametr Rt otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (64)

Analizując rys. 95 dla pierwszego układu kinematycznego stwierdzono, że stosując największy badany posuw na obrót 0,14 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość parametru Rt. W tym przypadku zmiana prędkości obrotowej wrzeciona oraz posuwu na obrót pogarsza w znaczący sposób parametr Rt.

Rys. 96. Wpływ parametrów technologicznych w drugiej kinematyce na parametr Rt otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (64)

Analizując rys. 96 dla drugiego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz najmniejszą wartość prędkości obrotowej wrzeciona 3183 obr/min, uzyskano najmniejszą wartość parametru Rt. W tym przypadku zastosowania największej wartości posuwu 0,14 mm/obr oraz największej badanej wartości prędkości obrotowej wrzeciona, uzyskano również najmniejszą wartość parametru Rt.

Rys. 97. Wpływ parametrów technologicznych w trzeciej kinematyce na parametr Rt otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (64)

Analizując rys. 97 dla trzeciego układu kinematycznego zauważono, że stosując największy posuw na obrót 0,14 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą parametru Rt.

Rys. 98. Wpływ parametrów technologicznych w pierwszej kinematyce na parametr Ra otworu w stopie aluminium PA6 na podstawie równania (68)

Analizując rys. 98 dla pierwszego układu kinematycznego stwierdzono, że stosując posuw na obrót od 0,1 mm/obr do 0,11 mm/obr oraz najmniejszą wartość prędkości obrotowej wrzeciona 3183 obr/min, uzyskano najmniejszą wartość parametru Ra. W tym przypadku zmiana prędkości obrotowej wrzeciona wpływa drastycznie na zmianę wartości parametru Ra.

Rys. 99. Wpływ parametrów technologicznych w drugiej kinematyce na parametr Ra otworu w stopie aluminium PA6 na podstawie równania (68)

Analizując rys. 99 dla drugiego układu kinematycznego zauważono, że stosując posuw na obrót od 0,1 mm/obr do 0,115 mm/obr oraz najmniejszą wartość prędkości obrotowej wrzeciona 3183 obr/min, uzyskano najmniejszą wartość parametru Ra. W tym przypadku zmiana prędkości obrotowej wrzeciona wpływa drastycznie na zmianę wartości wyżej wymienionego parametru.

Rys. 100. Wpływ parametrów technologicznych w trzeciej kinematyce na parametr Ra otworu w stopie aluminium PA6 na podstawie równania (68)

Analizując rys. 100 dla trzeciego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz najmniejszą wartość prędkości obrotowej wrzeciona 3183 obr/min, uzyskano najmniejszą parametru Ra. W tym przypadku zmiana prędkości obrotowej wrzeciona wpływa drastycznie na zmianę wartości parametru Ra.

Rys. 101. Wpływ parametrów technologicznych w pierwszej kinematyce na parametr Rz otworu w stopie mosiądzu MO58 na podstawie równania (69)

Analizując rys. 101 dla pierwszego układu kinematycznego stwierdzono, że stosując posuw na obrót od 0,12 mm/obr do 0,14 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość parametru Rz.

Rys. 102. Wpływ parametrów technologicznych w drugiej kinematyce na parametr Rz otworu w stopie mosiądzu MO58 na podstawie równania (69)

Analizując rys. 102 dla drugiego układu kinematycznego stwierdzono, że stosując posuw na obrót od 0,1 mm/obr do 0,13 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość parametru Rz. W tym przypadku zmiana prędkości obrotowej wrzeciona wpływa drastycznie na zmianę wartości parametru Rz. Jednakże wzrost posuwu na obrót nie zmienia bardzo wartość wyżej wymienionego parametru.

Rys. 103. Wpływ parametrów technologicznych w trzeciej kinematyce na parametr Rz otworu w stopie mosiądzu MO58 na podstawie równania (69)

Analizując rys. 103 dla trzeciego układu kinematycznego zauważono, że stosując posuw na obrót od 0,11 mm/obr do 0,14 mm/obr oraz wartość prędkości obrotowej wrzeciona wynosząca 3183 obr/min lub 4775 obr/min, uzyskano najmniejszą wartość parametru Rz.

Rys. 104. Wpływ parametrów technologicznych w pierwszej kinematyce na parametr Rt otworu w stopie mosiądzu MO58 na podstawie równania (70)

Analizując rys. 104 dla pierwszego układu kinematycznego stwierdzono, że stosując posuw na obrót od 0,12 mm/obr do 0,14 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość parametru Rt.

Rys. 105. Wpływ parametrów technologicznych w drugiej kinematyce na parametr Rt otworu w stopie mosiądzu MO58 na podstawie równania (70)

Analizując rys. 105 dla drugiego układu kinematycznego stwierdzono, że stosując posuw na obrót od 0,1 mm/obr do 0,125 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą parametru Rt. W tym przypadku zmiana prędkości obrotowej wrzeciona wpływa drastycznie na zmianę wartości wyżej wymienionego parametru.

Rys. 106. Wpływ parametrów technologicznych w trzeciej kinematyce na parametr Rt otworu w stopie mosiądzu MO58 na podstawie równania (70)

Analizując rys. 106 dla trzeciego układu kinematycznego stwierdzono, że stosując posuw na obrót 0,11 mm/obr oraz najmniejszą wartość prędkości obrotowej wrzeciona 3183 obr/min, uzyskano najmniejszą wartość parametru Rt. W tym przypadku istnieje również drugi przedział dla którego można uzyskać najmniejszą wartość parametru Rt dla prędkości obrotowej wrzeciona 4775 obr/min oraz posuwu na obrót od 0,115 mm/obr do 0,135 mm/obr.

Rys. 107. Wpływ parametrów technologicznych w pierwszej kinematyce na parametr Ra otworu w stopie mosiądzu MO58 na podstawie równania (71)

Analizując rys. 107 dla pierwszego układu kinematycznego zauważono, że stosując posuw na obrót od 0,11 mm/obr do 0,14 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość parametru Ra. W tym przypadku zmiana prędkości obrotowej wrzeciona wpływa drastycznie na zmianę wartości parametru Ra. Jednakże zmiana posuwu na obrót nie zmienia gwałtownie wartości wyżej wymienionego parametru.

Rys. 108. Wpływ parametrów technologicznych w drugiej kinematyce na parametr Ra otworu stopie mosiądzu MO58 na podstawie równania (71)

Analizując rys. 108 dla pierwszego układu kinematycznego stwierdzono, że stosując najmniejszy posuw na obrót 0,1 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość parametru Ra. W tym przypadku zmiana prędkości obrotowej wrzeciona oraz posuwu na obrót drastycznie wpływa na zmianę wartości parametru Ra.

Rys. 109. Wpływ parametrów technologicznych w trzeciej kinematyce na parametr Ra otworu w stopie mosiądzu MO58 na podstawie równania (71)

Analizując rys. 109 dla drugiego układu kinematycznego zauważono, że stosując posuw na obrót od 0,1 mm/obr do 0,125 mm/obr oraz największą wartość prędkości obrotowej wrzeciona 4775 obr/min, uzyskano najmniejszą wartość parametru Ra. W tym przypadku zmiana prędkości obrotowej wrzeciona lub posuwu na obrót wpływa drastycznie na zmianę wartości parametru Ra.

Wnioski:

- 1. Najmniejsze wartości parametru Ra, dla otworu w stali C45, uzyskano dla następujących zakresów parametrów technologicznych: dla KIN I n = 3183, $f_n = 0,1$, lub n = 4775, $f_n = 0,14$, dla KIN II n = 3183, $f_n = 0,1$ oraz dla KIN III n = 3183, $f_n = 0,1$.
- Najmniejsze wartości parametru Rt, dla otworu w stali ulepszonej cieplnie 40HM+QT, uzyskano dla następujących zakresów parametrów technologicznych: dla KIN I n = 4775, f_n = 0,14, dla KIN II n = 3183, f_n = 0,1 lub n = 4775, f_n = 0,14 oraz dla KIN III n = 4775, f_n = 0,14.
 Najmniejsze wartości parametru Ra, dla otworu w stopie aluminium PA6,
- 3. Najmniejsze wartości parametru Ra, dla otworu w stopie aluminium PA6, uzyskano dla następujących zakresów parametrów technologicznych: dla każdego układu kinematycznego były następujące n = 3183, $f_n \in <0,1; 0,11 >$.

- 4. Najmniejsze wartości parametru Rz, dla otworu w stopie mosiądzu MO58, uzyskano dla następujących zakresów parametrów technologicznych: dla KIN I n = 4775, $f_n \in < 0,12$; 0,14 >, dla KIN II n = 4775, $f_n \in < 0,1$; 0,13 > oraz dla KIN III n = 3183, $f_n \in < 0,11$; 0,14 > lub n = 4775, $f_n \in < 0,11$; 0,14 >.
- 5. Najmniejsze wartości parametru Rt, dla otworu w stopie mosiądzu MO58, uzyskano dla następujących zakresów parametrów technologicznych: dla KIN I n = 4775, $f_n \in < 0,12$; 0,14 >, dla KIN II n = 4775, $f_n \in < 0,1$; 0,125 > oraz dla KIN III n = 4775, $f_n \in < 0,12$; 0,14 >, dla KIN II n = 3183, $f_n = 0,11$.
- 6. Najmniejsze wartości parametru Ra, dla otworu w stopie mosiądzu MO58, uzyskano dla następujących zakresów parametrów technologicznych: dla KIN I n = 4775, $f_n \in < 0,11$; 0,14 >, dla KIN II n = 4775, $f_n = 0,1$ oraz dla KIN III n = 4775, $f_n \in < 0,1$; 0,125 >.

5.3. Analiza zadziorów na wyjściu otworu

Ostatnim etapem badań była analiza zadziorów powstających na wyjściu wierconego otworu. W tym podrozdziale przedstawiono analizę wysokości oraz szerokości zadziorów na wyjściu wykonanych otworów.

5.3.1. Analiza pomiarów geometrii wyrobów

Badania charakterystycznych wymiarów zadziorów zostały zrealizowane za pomocą mikroskopu Hirox KH-8700. Wykonano na nim pomiary wysokości (h_0) oraz szerokości (b_f) zadzioru na wyjściu otworu. Podczas badań stopu aluminium PA6 zadziory były bardzo małe. Zmierzone wartości powyższych parametrów zostały zestawione w tabeli 68. Aby umieścić wszystkie dane wybrano tablice ortogonalną L27. Kolorem zielonym określono wartości dla rozstępu 0 – 30%. Kolorem żółtym oznaczono przedział od 30 – 70 %. Natomiast kolorem czerwonym powyżej 70%. Rozstęp liczony jest jako różnica granicznych wartości.

Kod	h_0 ,	b _f ,	Kod	h_0 ,	b _f ,	Kod	h_0 ,	b _f ,	Kod	h_0 ,	b _f ,
nou	μm	μm									
TiI1S	90	221	TiI1 Q	75	224	TiI1 M	202	442	TiI1I	111	137
TiII1 S	117	128	TiII1 Q	94	204	TiII1 M	313	494	TiII1 I	70	136
TiIII 1S	114	164	TiIII1 Q	84	177	TiIII1 M	146	375	TiIII 1I	74	133
TiI2S	66	134	Til2 Q	65	165	TiI2 M	152	407	TiI2I	168	148

Tabela 68. Wyniki wymiarów zadzioru otworu w każdym badanym materiale.

Kod	h_0 ,	b _f ,	Kod	h_0 ,	b _f ,	Kod	h ₀ ,	b _f ,	Kod	h_0 ,	b _f ,
TiII2		μ111 08	TiII2	μ111 71	μIII 120	TiII2	μm 224	470	TiII2	μ111 74	μIII 169
S	//	90	Q	/1	139	Μ	224	4/9	Ι	/4	108
TiIII 2S	91	128	TiIII2 Q	81	147	TiIII2 M	121	349	TiIII 2I	131	147
TiI3S	56	145	TiI3 Q	73	207	TiI3 M	153	384	TiI3I	108	149
TiII3 S	108	114	TiII3 Q	88	144	TiII3 M	206	341	TiII3 I	68	171
TiIII 3S	71	123	TiIII3 Q	86	154	TiIII3 M	110	384	TiIII 3I	80	150
TiI4S	77	157	TiI4 Q	67	214	TiI4 M	267	407	TiI4I	67	154
TiII4 S	66	204	TiII4 Q	79	185	TiII4 M	293	491	TiII4 I	114	162
TiIII 4S	69	171	TiIII4 Q	69	137	TiIII4 M	201	384	TiIII 4I	81	174
TiI5S	60	174	TiI5 Q	53	172	TiI5 M	211	437	TiI5I	87	185
TiII5 S	57	157	TiII5 Q	65	203	TiII5 M	201	467	TiII5 I	127	190
TiIII 5S	75	165	TiIII5 Q	74	124	TiIII5 M	160	387	TiIII 5I	86	205
TiI6S	41	204	TiI6 Q	51	188	TiI6 M	310	487	TiI6I	109	198
TiII6 S	51	167	TiII6 Q	57	154	TiII6 M	315	434	TiII6 I	68	207
TiIII 6S	76	201	TiIII6 Q	64	150	TiIII6 M	224	394	TiIII 6I	108	192
TiI7S	127	105	TiI7 Q	86	187	TiI7 M	198	398	TiI7I	122	178
TiII7 S	85	192	TiII7 Q	91	217	TiII7 M	259	347	TiII7 I	122	173
TiIII 7S	98	168	TiIII7 Q	98	147	TiIII7 M	137	242	TiIII 7I	123	174
TiI8S	63	149	TiI8 Q	52	221	TiI8 M	252	341	TiI8I	141	188
TiII8 S	91	204	TiII8 Q	89	187	TiII8 M	253	289	TiII8 I	156	185
TiIII 8S	78	187	TiIII8 O	58	167	TiIII8 M	156	301	TiIII 8I	131	281

Kod	h ₀ ,	b _f ,	Kod	h ₀ ,	b _f ,	Kod	h ₀ ,	b _f ,	Kod	h ₀ ,	b _f ,
Rou	μm	μm	nou	μm	μm	Rou	μm	μm	nou	μm	μm
T:100	126	167	TiI9	60	221	TiI9	222	220	T:101	166	200
11195	120	107	Q	08	231	Μ	ZZZ	528	11191	100	209
TiII9	110	174	TiII9	64	164	TiII9	210	201	TiII9	142	104
S	110	1/4	Q	64	104	Μ	218	291	Ι	145	194
TiIII	05	100	TiIII9		100	TiIII9	249	200	TiIII	07	174
9S	95	196	Q	22	182	Μ	248	290	9I	97	1/4

Analizując tabelę 68 stwierdzono, że najbardziej odpowiednimi parametrami wejściowymi powodującymi powstanie najmniejszych zadziorów dla badanych materiałów były następujące zestawy: TiI2S (dla stali C45), TiII6Q, TiII6Q (dla stali ulepszonej cieplnie 40HM+QT), TiII17M, TiII18M (dla stopu mosiądzu MO58), TiII11, TiII111, TiII2I, TiII3I, TiII13I, TiI4I oraz TiII19I (dla Inconelu 718). Powyższe zestawy parametrów wejściowych były najniższe mieszczące się w 30% strefie wszystkich wyników.

5.3.2. Analiza statystyczna ANOVA

Tak jak przedstawiono w podrozdziale 5.1.2. wybrano również w analizie statystycznej model regresji powierzchni ze względu na jej hybrydowość. Zbadano wpływ parametrów wejściowych (n, f_n , KIN) na parametry wyjściowe (h_0 , b_f). Poniżej w tabelach przedstawiono wyniki tych analiz.

	wyjselu otv	voiu v	wywiereonege			
Efekt	SS	DF	MS	F	р	Udział %
Model	10141,4129	9	1126,8237	4,8952	0,0024	
Wyraz wolny	7674,6493	1	7674,6493	33,3403	0,0000	
n	1877,9105	1	1877,9105	8,1580	0,0109	11,08
n ²	1276,0635	1	1276,0635	5,5435	0,0308	7,53
$\mathbf{f}_{\mathbf{n}}$	5974,8542	1	5974,8542	25,9560	0,0001	35,27
f_n^2	4988,1667	1	4988,1667	21,6696	0,0002	29,44
KIN	69,1773	1	69,1773	0,3005	0,5907	0,41
KIN ²	75,6681	1	75,6681	0,3287	0,5739	0,45
$n \cdot f_n$	954,0833	1	954,0833	4,1447	0,0577	5,63
n∙KIN	552,8733	1	552,8733	2,4018	0,1396	3,26
f _n ·KIN	1172,7162	1	1172,7162	5,0945	0,0375	6,92
Błąd	3913,2538	17	230,1914			27,84

Tabela 69. Analiza statystyczna ANOVA dla wysokości zadzioru powstającego na wyjściu otworu wywierconego w stali C45

Efekt	SS	DF	MS	F	р	Udział %
Łącznie	14054,6667	26				100,00

 $R = 0,8495; R^2 = 0,7216$

Z tabeli 69 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Wpływał on w największym stopniu na wysokość zadzioru (wpływ wynoszący 70,99%). Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 23,06%, nieznaczny wpływ miał układ kinematyczny 5,95%.

Tabela 70. Analiza statystyczna ANOVA dla szerokości zadzioru powstającego na wyjściu otworu wywierconego w stali C45

Efekt	SS	DF	MS	F	р	Udział %
Model	22051,4452	9	2450,1606	6,7773	0,0004	
Wyraz wolny	164,8368	1	164,8368	0,4559	0,5086	
n	2378,2102	1	2378,2102	6,5782	0,0201	10,11
n^2	823,8990	1	823,8990	2,2789	0,1495	3,50
$\mathbf{f}_{\mathbf{n}}$	1081,8733	1	1081,8733	2,9925	0,1018	4,60
f_n^2	3007,5741	1	3007,5741	8,3191	0,0103	12,78
KIN	2598,2362	1	2598,2362	7,1868	0,0158	11,04
KIN ²	119,9224	1	119,9224	0,3317	0,5722	0,51
$n \cdot f_n$	3434,0833	1	3434,0833	9,4988	0,0068	14,60
n∙KIN	844,1045	1	844,1045	2,3348	0,1449	3,59
f _n ·KIN	9240,4294	1	9240,4294	25,5594	0,0001	39,27
Błąd	6145,9622	17	361,5272			21,80
Łącznie	28197,4074	26				100,00

 $R = 0,8843; R^2 = 0,7820$

Z tabeli 70 wynika, że każdy z parametrów badanych miał znaczenie na szerokość zadzioru. Największy wpływ miał posuw na obrót 44,32%, układ kinematyczny 32,98% oraz prędkość obrotowa wrzeciona 22,7%.

Tabela 71. Analiza statystyczna ANOVA dla wysokości zadzioru powstającego na wyjściu otworu wywierconego w stali ulepszonej cieplnie 40HM+OT

23		0		<u> </u>		<u>`</u>
Efekt	SS	DF	MS	F	р	Udział %
Model	3719,3688	9	413,2632	5,8092	0,0009	
Wyraz wolny	463,3257	1	463,3257	6,5129	0,0206	
n	32,3644	1	32,3644	0,4549	0,5091	1,39
n ²	333,1860	1	333,1860	4,6836	0,0450	14,32
Efekt	SS	DF	MS	F	р	Udział %
------------------	-----------	----	----------	---------	--------	----------
\mathbf{f}_{n}	457,8728	1	457,8728	6,4363	0,0213	19,68
f_n^2	896,2963	1	896,2963	12,5991	0,0025	38,52
KIN	5,1702	1	5,1702	0,0727	0,7907	0,22
KIN ²	41,7434	1	41,7434	0,5868	0,4542	1,79
$n \cdot f_n$	560,3333	1	560,3333	7,8765	0,0121	24,08
n·KIN	0,0276	1	0,0276	0,0004	0,9845	0,00
f_n ·KIN	0,0811	1	0,0811	0,0011	0,9735	0,00
Błąd	1209,3720	17	71,1395			24,54
Łącznie	4928,7407	26				100,00

 $R = 0,8687; R^2 = 0,7546$

Z tabeli 71 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Wpływał on w największym stopniu na wysokość zadzioru (wpływ wynoszący 70,23%). Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 27,75%, nieznaczny wpływ miał układ kinematyczny 2,02%.

Tabela 72. Analiza statystyczna ANOVA dla szerokości zadzioru powstającego na wyjściu otworu wywierconego w stali ulepszonej cieplnie 40HM+QT

wyjselu otword wywiereonego w stan diepszonej elepinie 401101 (Q1						
Efekt	SS	DF	MS	F	р	Udział %
Model	17571,6378	9	1952,4042	5,4101	0,0014	
Wyraz wolny	3808,7045	1	3808,7045	10,5538	0,0047	
n	1578,6874	1	1578,6874	4,3745	0,0518	9,02
n ²	734,5337	1	734,5337	2,0354	0,1718	4,20
$\mathbf{f}_{\mathbf{n}}$	1536,1031	1	1536,1031	4,2565	0,0547	8,78
f_n^2	816,6667	1	816,6667	2,2630	0,1509	4,67
KIN	643,0278	1	643,0278	1,7818	0,1995	3,68
KIN ²	8504,2398	1	8504,2398	23,5650	0,0001	48,61
$n \cdot f_n$	1323,0000	1	1323,0000	3,6660	0,0725	7,56
n∙KIN	2164,6285	1	2164,6285	5,9981	0,0255	12,37
$f_n \cdot KIN$	193,3177	1	193,3177	0,5357	0,4742	1,11
Błąd	6135,0289	17	360,8841			25,88
Łącznie	23706,6667	26				100,00

 $R = 0,8609; R^2 = 0,7412$

Z tabeli 72 wynika, że układ kinematyczny zdominował pozostałe parametry wejściowe. Wpływał on w największym stopniu na szerokość zadzioru (wpływ

wynoszący 59,03%). Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 23,19% oraz posuw na obrót 17,78%.

wyjselu otword wywiereonego w stopie mosiądzu wioso						
Efekt	SS	DF	MS	F	р	Udział %
Model	70956,1668	9	7884,0185	7,2894	0,0002	
Wyraz wolny	138,7874	1	138,7874	0,1283	0,7246	
n	10482,5018	1	10482,5018	9,6919	0,0063	13,57
n ²	5196,4431	1	5196,4431	4,8045	0,0426	6,73
$\mathbf{f}_{\mathbf{n}}$	5898,2297	1	5898,2297	5,4534	0,0320	7,64
f_n^2	11674,7407	1	11674,7407	10,7942	0,0044	15,12
KIN	2500,0822	1	2500,0822	2,3115	0,1468	3,24
KIN ²	31152,2065	1	31152,2065	28,8026	0,0001	40,33
$n \cdot f_n$	6816,3333	1	6816,3333	6,3022	0,0225	8,83
n·KIN	983,1922	1	983,1922	0,9090	0,3537	1,27
f _n ·KIN	2531,4147	1	2531,4147	2,3405	0,1444	3,28
Błąd	18386,7962	17	1081,5762			20,58
Łącznie	89342,9630	26				100,00

Tabela 73. Analiza statystyczna ANOVA dla wysokości zadzioru powstającego na wyjściu otworu wywierconego w stopie mosiadzu MO58

 $R = 0,8912; R^2 = 0,7942$

Z tabeli 73 wynika, że układ kinematyczny 45,85% uzyskał największy wpływ na wysokość zadzioru. Kolejnym wpływowym parametrem był posuw na obrót 28,8% oraz prędkość obrotowa wrzeciona 25,35%.

Tabela 74. Analiza statystyczna ANOVA dla szerokości zadzioru powstającego na wyjściu otworu wywierconego w stopie mosiądzu MO58

			<u> </u>			
Efekt	SS	DF	MS	F	р	Udział %
Model	107403,3394	9	11933,7044	12,8592	0,0000	
Wyraz wolny	12478,9704	1	12478,9704	13,4467	0,0019	
n	115,5241	1	115,5241	0,1245	0,7286	0,11
n ²	16,5898	1	16,5898	0,0179	0,8952	0,02
$\mathbf{f}_{\mathbf{n}}$	28099,9192	1	28099,9192	30,2791	0,0000	27,55
f_n^2	31008,0741	1	31008,0741	33,4128	0,0000	30,40
KIN	7940,0917	1	7940,0917	8,5559	0,0094	7,79
KIN ²	25299,6441	1	25299,6441	27,2617	0,0001	24,81
$n \cdot f_n$	1281,3333	1	1281,3333	1,3807	0,2562	1,26

Efekt	SS	DF	MS	F	р	Udział %
n·KIN	3439,1030	1	3439,1030	3,7058	0,0711	3,37
f _n ·KIN	4785,2054	1	4785,2054	5,1563	0,0365	4,69
Błąd	15776,5124	17	928,0301			12,81
Łącznie	123179,8519	26				100,00

 $R = 0,9338; R^2 = 0,8719$

Z tabeli 74 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Wpływał on w największym stopniu na szerokość zadzioru (wpływ wynoszący 60,94%). Kolejnym wpływowym parametrem wejściowym był układ kinematyczny 36,62%, nieznaczny wpływ miała prędkość obrotowa wrzeciona 2,44%.

Tabela 75. Analiza statystyczna ANOVA dla wysokości zadzioru powstającego na wyjściu otworu wywierconego w Inconelu 718.

Efekt	SS	DF	MS	F	р	Udział %
Model	12953,6371	9	1439,293	6,4277	0,0005	
Wyraz wolny	1804,3087	1	1804,309	8,0578	0,0113	
n	991,9494	1	991,9494	4,4299	0,0505	16,09
n ²	1271,4728	1	1271,473	5,6782	0,0291	20,62
$\mathbf{f}_{\mathbf{n}}$	654,636	1	654,636	2,9235	0,1055	10,62
f_n^2	1360,0185	1	1360,019	6,0736	0,0247	22,06
KIN	301,5366	1	301,5366	1,3466	0,2619	4,89
KIN ²	1018,2224	1	1018,222	4,5472	0,0479	16,52
$n \cdot f_n$	177,584	1	177,584	0,7931	0,3856	2,88
n∙KIN	184,0126	1	184,0126	0,8218	0,3773	2,98
$f_n \cdot KIN$	205,4368	1	205,4368	0,9175	0,3516	3,33
Błąd	3806,6592	17	223,9211			22,71
Łącznie	16760,2963	26				100

 $R = 0.8791; R^2 = 0.77\overline{29}$

Z tabeli 75 wynika, że każdy z parametrów wejściowych miał podobny wpływ na wysokość zadzioru. Prędkość obrotowa wrzeciona 39,65%, posuw na obrót 35,79% oraz układ kinematyczny 24,56%.

Tabela 76. Analiza statystyczna ANOVA dla szerokości zadzioru powstającego na wyjściu otworu wywierconego w Inconelu 718.

	<u> </u>	5	0			
Efekt	SS	DF	MS	F	р	Udział %
Model	16498,91	9	1833,213	4,009144	0,006685	

Efekt	SS	DF	MS	F	р	Udział %
Wyraz wolny	10796,9419	1	10796,94	23,6124	0,0001	
n	3078,3147	1	3078,315	6,7321	0,0189	11,71
n ²	4588,4014	1	4588,401	10,0346	0,0056	17,46
$\mathbf{f}_{\mathbf{n}}$	7264,4713	1	7264,471	15,887	0,001	27,64
f_n^2	10278,2407	1	10278,24	22,478	0,0002	39,10
KIN	144,9856	1	144,9856	0,3171	0,5807	0,55
KIN ²	2,8487	1	2,8487	0,0062	0,938	0,01
$n \cdot f_n$	734,0779	1	734,0779	1,6054	0,2222	2,79
n·KIN	6,8027	1	6,8027	0,0149	0,9044	0,03
$f_n \cdot KIN$	188,4505	1	188,4505	0,4121	0,5295	0,72
Błąd	7773,3837	17	457,2579			32,03
Łącznie	24272,2937	26				100

 $R = 0,8245; R^2 = 0,6797$

Z tabeli 76 wynika, że posuw na obrót zdominował pozostałe parametry wejściowe. Wpływał on w największym stopniu na szerokość zadzioru (wpływ wynoszący 68,49%). Kolejnym wpływowym parametrem wejściowym była prędkość obrotowa wrzeciona 30,58%, nieznaczny wpływ miał układ kinematyczny 0,93%.

Z tabel 69-76 nasuwa się wniosek, że poniższe modele są istotne gdyż wartości p są mniejsze niż 0,05.

Stosując równanie hybrydowe (39) zbudowano modele matematyczne dla wysokości oraz szerokości zadzioru na wyjściu dla każdego badanego materiału. Poniżej zapisano równania dotyczące każdego wyżej wymienionego parametru oraz badanych materiałów.

$$\begin{aligned} h_{0_{C45}} &= 1719,03 - 2,41 \cdot 10^{-1} \cdot n + 2,30 \cdot 10^{-5} \cdot n^{2} + \\ &- 19759,16 \cdot f_{n} + 72083,33 \cdot f_{n}^{2} + 4,87 \cdot 10^{-3} \cdot KIN + \\ &- 2,08 \cdot 10^{-7} \cdot KIN^{2} + 5,6 \cdot 10^{-1} \cdot n \cdot f_{n} + 2,21 \cdot 10^{-6} \cdot n \cdot KIN + \\ &- 1,22 \cdot 10^{-1} \cdot f_{n} \cdot KIN \end{aligned}$$

$$\begin{split} b_{f_{C45}} &= 251,93 - 2,72 \cdot 10^{-1} \cdot n + 1,84 \cdot 10^{-5} \cdot n^2 + \\ &+ 8408 \cdot f_n - 55972,22 \cdot f_n^2 - 2,98 \cdot 10^{-2} \cdot KIN + \\ &- 2,62 \cdot 10^{-7} \cdot KIN^2 + 1,06 \cdot n \cdot f_n - 2,73 \cdot 10^{-6} \cdot n \cdot KIN + \\ &+ 3,44 \cdot 10^{-1} \cdot f_n \cdot KIN \end{split} \tag{76}$$

$$h_{0_{40HM}} = 422,37 - 3,17 \cdot 10^{-2} \cdot n + 1,17 \cdot 10^{-5} \cdot n^{2} + -5469,87 \cdot f_{n} + 30555,55 \cdot f_{n}^{2} - 1,33 \cdot 10^{-3} \cdot KIN + -1,54 \cdot 10^{-7} \cdot KIN^{2} - 4,29 \cdot 10^{-1} \cdot n \cdot f_{n} - 1,56 \cdot 10^{-8} \cdot n \cdot KIN + -1,01 \cdot 10^{-3} \cdot f_{n} \cdot KIN$$

$$(77)$$

$$\begin{split} b_{f_{40HM}} &= 1211 - 2,21 \cdot 10^{-1} \cdot n + 1,74 \cdot 10^{-5} \cdot n^2 + \\ &- 10018,78 \cdot f_n + 29166,66 \cdot f_n^2 + 1,48 \cdot 10^{-2} \cdot KIN + \\ &+ 2,2 \cdot 10^{-6} \cdot KIN^2 + 6,59 \cdot 10^{-1} \cdot n \cdot f_n - 4,38 \cdot 10^{-6} \cdot n \cdot KIN + \\ &+ 4,97 \cdot 10^{-2} \cdot f_n \cdot KIN \end{split}$$

$$h_{0_{M058}} = 231,16 - 5,71 \cdot 10^{-1} \cdot n + 4,64 \cdot 10^{-5} \cdot n^{2} + +19632,05 \cdot f_{n} - 110277,77 \cdot f_{n}^{2} + 2,93 \cdot 10^{-2} \cdot KIN + +4,22 \cdot 10^{-6} \cdot KIN^{2} + 1,49 \cdot n \cdot f_{n} - 2,95 \cdot 10^{-6} \cdot n \cdot KIN + -1,8 \cdot 10^{-1} \cdot f_{n} \cdot KIN$$
(79)

$$\begin{split} b_{f_{MO58}} &= -2192,02 - 5,99 \cdot 10^{-2} \cdot n - 2,62 \cdot 10^{-6} \cdot n^2 + \\ &+ 42850,64 \cdot f_n - 179722,22 \cdot f_n^2 + 5,22 \cdot 10^{-2} \cdot KIN + \\ &+ 3,8 \cdot 10^{-6} \cdot KIN^2 + 6,49 \cdot 10^{-1} \cdot n \cdot f_n - 5,52 \cdot 10^{-6} \cdot n \cdot KIN + \\ &- 2,47 \cdot 10^{-1} \cdot f_n \cdot KIN \end{split} \tag{80}$$

$$\begin{aligned} h_{0_{I718}} &= 675,48 - 8,59 \cdot 10^{-1} \cdot n + 5,76 \cdot 10^{-4} \cdot n^2 + \\ &- 7399,25 \cdot f_n + 66913,58 \cdot f_n^2 - 4,66 \cdot 10^{-2} \cdot KIN + \\ &+ 1,9 \cdot 10^{-5} \cdot KIN^2 - 1,61 \cdot n \cdot f_n + 3,2 \cdot 10^{-5} \cdot n \cdot KIN + \\ &+ 3,41 \cdot 10^{-1} \cdot f_n \cdot KIN \end{aligned}$$

$$\begin{split} b_{f_{1718}} &= 1652,38 - 1,51 \cdot n + 1,09 \cdot 10^{-3} \cdot n^2 + \\ &- 2464,47 \cdot f_n + 183950,61 \cdot {f_n}^2 - 3,23 \cdot 10^{-2} \cdot KIN + \\ &- 1 \cdot 10^{-6} \cdot KIN^2 - 3,27 \cdot n \cdot f_n + 6,16 \cdot 10^{-6} \cdot n \cdot KIN + \\ &+ 3,27 \cdot 10^{-1} \cdot f_n \cdot KIN \end{split} \tag{82}$$

gdzie: n – wartość prędkości obrotowej wrzeciona, f_n – wartość posuwu na obrót, KIN – układ kinematyczny, $n \cdot f_n$ – interakcja wartości prędkości obrotowej wrzeciona z wartością posuwu na obrót, $n \cdot KIN$ – interakcja wartości prędkości obrotowej wrzeciona z układem kinematycznym, $f_n \cdot KIN$ – interakcja wartości posuwu na obrót z układem kinematycznym.

W tabelach poniżej zestawiono wartości zmierzone z przewidywanymi. Wartości te wskazują na dokładność modeli gdyż wartości są bardzo zbliżone do siebie. Dla stali C45 wartości błędów względnych były następujące: dla h_0 13% oraz dla b_f 7%. Dla stali ulepszonej cieplnie 40HM+QT wartości błędów względnych były następujące: dla h_0 7% oraz dla b_f 6%. Dla stopu mosiądzu MO58 wartości błędów

względnych były następujące: dla h_0 9% oraz dla b_f 4%. Dla Inconelu 718 wartości błędów względnych były następujące: dla h_0 14% oraz dla b_f 5%.

5	Eksperymen	talne wyniki	Przewidywane wyniki		
Kodowanie	h ₀ , μm	b _f , μm	h ₀ , μm	b _f , μm	
TiI1S	90	221	98	184	
TiII1S	117	128	114	134	
TiIII1S	114	164	111	165	
Til2S	66	134	63	160	
TiII2S	77	98	91	101	
TiIII2S	91	128	80	134	
TiI3S	56	145	60	155	
TiII3S	108	114	94	94	
TiIII3S	71	123	79	127	
TiI4S	77	157	76	173	
TiII4S	66	204	69	189	
TiIII4S	69	171	78	187	
TiI5S	60	174	49	171	
TiII5S	57	157	57	167	
TiIII5S	75	165	56	173	
TiI6S	41	204	53	188	
TiII6S	51	167	71	171	
TiIII6S	76	201	64	182	
TiI7S	127	105	113	117	
TiII7S	85	192	82	198	
TiIII7S	98	168	102	163	
TiI8S	63	149	92	137	
TiII8S	91	204	81	187	
TiIII8S	78	187	90	166	
TiI9S	126	167	103	177	
TiII9S	110	174	105	203	
TiIII9S	95	196	106	193	

Tabela 77. Zestawione wyniki badań eksperymentalnych z przewidywanymi dla wysokości oraz szerokości zadzioru na wyjściu otworu w stali C45.

	Eksperymen	talne wyniki	Przewidywane wyniki	
Kodowanie	h₀, μm	b _f , μm	h₀, μm	b _f , μm
TiI1Q	75	224	74	216
Till1Q	94	204	89	207
TiII1Q	84	177	85	161
TiI2Q	65	165	68	195
Till2Q	71	139	80	160
TiIII2Q	81	147	76	142
TiI3Q	73	207	76	193
Till3Q	88	144	86	143
TiIII3Q	86	154	82	145
TiI4Q	67	214	66	197
TiII4Q	79	185	81	197
TiIII4Q	69	137	77	147
TiI5Q	53	172	53	187
Till5Q	65	203	65	160
TiIII5Q	74	124	61	138
TiI6Q	51	188	54	196
Till6Q	57	154	63	153
TiIII6Q	64	150	60	152
TiI7Q	86	187	82	201
Till7Q	91	217	96	211
TiIII7Q	98	147	93	156
TiI8Q	52	221	62	202
TiII8Q	89	187	74	183
TiIII8Q	58	167	70	158
TiI9Q	68	231	56	223
Till9Q	64	164	66	186
TiIII9Q	55	182	63	182

Tabela 78. Zestawione wyniki badań eksperymentalnych z przewidywanymi dla wysokości oraz szerokości zadzioru na wyjściu otworu w stali ulepszonej cieplnie 40HM+QT.

	Eksperymen	talne wyniki	Przewidywane wyniki	
Kodowanie	h₀, μm	b _f , μm	h₀, μm	b _f , μm
TiI1M	202	442	200	417
TiII1M	313	494	296	501
TiII11M	146	375	151	372
TiI2M	152	407	152	409
TiII2M	224	479	213	444
TiIII2M	121	349	115	366
TiI3M	153	384	164	395
TiII3M	206	341	198	395
TiIII3M	110	384	138	356
TiI4M	267	407	255	456
TiII4M	293	491	316	493
TiIII4M	201	384	189	388
TiI5M	211	437	228	454
TiII5M	201	467	260	450
TiIII5M	160	387	177	392
TiI6M	310	487	261	447
TiII6M	315	434	272	415
TiIII6M	224	394	224	393
TiI7M	198	398	222	352
TiII7M	259	347	249	341
TiIII7M	137	242	139	260
TiI8M	252	341	216	356
TiII8M	253	289	219	312
TiIII8M	156	301	150	274
TiI9M	222	328	270	355
TiII9M	218	291	258	292
TiIII9M	248	290	221	285

Tabela 79. Zestawione wyniki badań eksperymentalnych z przewidywanymi dla wysokości oraz szerokości zadzioru na wyjściu otworu w stopie mosiądzu MO58

-	Eksperymen	talne wyniki	Przewidywane wyniki		
Kodowanie	h₀, μm	b _f , μm	h₀, μm	b _f , μm	
TiI1I	111	137	110	119	
TiII1I	70	136	81	132	
TiII11	74	133	82	137	
TiI2I	168	148	138	151	
TiII2I	74	168	92	165	
TiIII2I	131	147	106	166	
TiI3I	108	149	121	147	
TiII3I	68	171	67	161	
TiIII3I	80	150	88	160	
TiI4I	67	154	86	162	
TiII4I	114	162	90	164	
TiIII4I	81	174	75	175	
TiI5I	87	185	120	192	
TiII5I	127	190	102	197	
TiIII5I	86	205	102	203	
TiI6I	109	198	108	186	
Till6I	68	207	77	193	
TiIII6I	108	192	87	195	
TiI7I	122	178	105	178	
TiII7I	122	173	143	169	
TiIII7I	123	174	111	186	
TiI8I	141	188	145	207	
TiII8I	156	185	155	202	
TiIII8I	131	281	141	213	
TiI9I	166	209	140	199	
TiII9I	143	194	131	198	
TiIII9I	97	174	129	204	

Tabela 80. Zestawione wyniki badań eksperymentalnych z przewidywanymi dla wysokości oraz szerokości zadzioru na wyjściu otworu w Inconelu 718

Na rys. 110-117 przedstawiono średnie wartości wysokości oraz szerokości zadzioru na wyjściu otworu (h_0 oraz b_f) w stosunku do badanych parametrów wejściowych (n, f_n oraz KIN) dla stali C45, stali ulepszonej cieplnie 40HM+QT, stopu mosiądzu MO58 oraz Inconelu 718.

Rys. 110. Wykresy efektów głównych wysokości zadzioru powstałego na wyjściu otworu dla stali C45

Z danych przedstawionych na rys. 110 wynika, że stosując prędkość obrotową wynoszącą 3979 obr/min, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 81,6 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość wysokości zadzioru na poziomie (h₀ = 63,6 μ m) jest 0,12 mm/obr. Wykorzystując w procesie wiercenia stali C45 układ kinematyczny pierwszy, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 78,4 μ m.

Rys. 111. Wykresy efektów głównych szerokości zadzioru powstałego na wyjściu otworu dla stali C45

Z rys. 111 wynika, że stosując prędkość obrotową wynoszącą 3979 obr/min, uzyskano najmniejszą wartość szerokości zadzioru wynoszącą 155,1 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość szerokości zadzioru na poziomie (b_f =139,4 μ m) jest 0,14 mm/obr. Wykorzystując w procesie wiercenia układ kinematyczny drugi, uzyskano najmniejszą wartość szerokości zadzioru wynoszącą 159,8 μ m.

Rys. 112. Wykresy efektów głównych wysokości zadzioru powstałego na wyjściu otworu dla stali ulepszonej cieplnie 40HM+QT

Z danych przedstawionych na rys. 112 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min oraz 3979 obr/min, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 67,4 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość wysokości zadzioru na poziomie (h₀ = 64,3 μ m) jest 0,12 mm/obr. Wykorzystując układ kinematyczny pierwszy, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 65,6 μ m.

Rys. 113. Wykresy efektów głównych szerokości zadzioru powstałego na wyjściu otworu dla stali ulepszonej cieplnie 40HM+QT

Z rys. 113 wynika, że stosując prędkość obrotową wynoszącą 3979 obr/min, uzyskano najmniejszą wartość szerokości zadzioru wynoszącą 169,4 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość szerokości zadzioru na poziomie (b_f = 169,7 μ m) jest 0,12 mm/obr. Wykorzystując w procesie wiercenia stali ulepszonej cieplnie 40HM+QT układ kinematyczny trzeci, uzyskano najmniejszą wartość szerokości zadzioru wynoszącą 153,9 μ m.

Rys. 114. Wykresy efektów głównych wysokości zadzioru powstałego na wyjściu otworu dla stopu mosiądzu MO58

Z danych przedstawionych na rys. 114 wynika, że stosując prędkość obrotową wynoszącą 3979 obr/min, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 192,2 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość wysokości zadzioru na poziomie (h₀ = 180,8 μ m) jest 0,14 mm/obr. Wykorzystując układ kinematyczny trzeci, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 167 μ m.

Rys. 115. Wykresy efektów głównych szerokości zadzioru powstałego na wyjściu otworu dla stopu mosiądzu MO58

Z na rys. 115 wynika, że stosując prędkość obrotową wynoszącą 3183 obr/min, uzyskano najmniejszą wartość szerokości zadzioru wynoszącą 370,3 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość szerokość zadzioru na poziomie (b_f = 314,1 μ m) jest 0,11 mm/obr. Wykorzystując w procesie wiercenia w stopie mosiądzu MO58 układ kinematyczny trzeci, uzyskano najmniejszą wartość szerokość zadzioru wynoszącą 345,1 μ m. Zauważono, że zmniejszenie wartości prędkości obrotowej wrzeciona powoduje zmniejszenie wartości szerokości zadzioru.

Rys. 116. Wykresy efektów głównych wysokości zadzioru powstałego na wyjściu otworu dla Inconelu 718

Z rys. 116 wynika, że stosując prędkość obrotową wynoszącą 800 obr/min, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 99,3 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość wysokości zadzioru na poziomie (h₀ = 94,1 μ m) jest 0,06 mm/obr. Wykorzystując w procesie wiercenia Inconelu 718 układ kinematyczny trzeci, uzyskano najmniejszą wartość wysokości zadzioru wynoszącą 101,2 μ m. Zauważono, że zmniejszenie wartości posuwu na obrót powoduje zmniejszenie wartości wysokości zadzioru.

Rys. 117. Wykresy efektów głównych szerokości zadzioru powstałego na wyjściu otworu dla Inconelu 718

Z danych przedstawionych na rys. 117 wynika, że stosując prędkość obrotową wynoszącą 800 obr/min, uzyskano najmniejszą wartość szerokości zadzioru wynoszącą 157,9 μ m. Najkorzystniejszą wartością posuwu na obrót, dla której uzyskano wartość wysokości zadzioru na poziomie (b_f = 148,8 μ m) jest 0,075 mm/obr. Wykorzystując układ kinematyczny pierwszy, uzyskano najmniejszą wartość szerokości zadzioru wynoszącą 171,8 μ m.

Wnioski:

- 1. Przedstawione równania posłużą do przewidywania wysokości oraz szerokości zadzioru na wyjściu otworu dla każdego badanego materiału.
- 2. Zbudowane modele matematyczne cechują się dobrą korelacją w stosunku do badań eksperymentalnych dla stali C45 parametr $h_0 R^2 = 72,16\%$, parametr $b_f R^2 = 78,2\%$. Dla stali ulepszonej cieplnie 40HM+QT parametr $h_0 R^2 = 75,46\%$, parametr $b_f R^2 = 74,12\%$. Dla stopu mosiądzu MO58 parametr $h_0 R^2 = 79,42\%$, parametr $b_f R^2 = 87,19\%$. Dla Inconelu 718 parametr $h_0 R^2 = 77,29\%$, parametr $b_f R^2 = 67,97\%$.
- 3. Zbudowane modele matematyczne są istotne wartości p są mniejsze niż 0,05.
- Układ kinematyczny ma bardzo duży wpływ w ocenie następujących parametrów: dla stali ulepszonej cieplnie 40HM+QT w parametrze bf 59,03%, dla stopu mosiądzu MO58 w parametrze h₀ 45,85% oraz w parametrze bf 36,62%.
- 5. Wybór układu kinematycznego zależy od obrabianego materiału. W stali C45, stali ulepszonej cieplnie 40HM+QT oraz Inconelu 718 nie można wskazać konkretnego układu kinematycznego ze względu na to, że dla każdego parametru wybrano inny najkorzystniejszy układ kinematyczny. Natomiast dla stopu mosiądzu MO58 najkorzystniejszym układem kinematycznym był KIN III osiągnął on najmniejsze wartości w każdym badanym parametrze.

5.3.3. Badania symulacyjne wybranych modeli

W tym podrozdziale przedstawiono wyniki badań symulacyjnych zbudowanych modeli dla wysokości oraz szerokości zadzioru na wyjściu otworu. Wybrane zostaną te modele na które jednym z najbardziej oddziaływującym czynnikiem na parametr wyjściowy był układ kinematyczny (posiadał on ponad 40% wpływu na parametr zadzioru). Na rys. 118-123 przedstawiono badania symulacyjne wzorów (78) oraz (79).

Rys. 118. Wpływ parametrów technologicznych w pierwszej kinematyce na szerokość zadzioru na wyjściu otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (78)

Analizując rys. 118 dla pierwszego układu kinematycznego stwierdzono, że stosując posuw na obrót od 0,12 mm/obr do 0,135 mm/obr oraz wartość prędkości obrotowej wrzeciona od 3500 obr/min do 4200 obr/min, uzyskano najmniejszą wartość szerokości zadzioru.

Rys. 119. Wpływ parametrów technologicznych w drugiej kinematyce na szerokość zadzioru na wyjściu otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (78)

Analizując rys. 119 dla drugiego układu kinematycznego zauważono, że stosując posuw na obrót od 0,13 mm/obr do 0,14 mm/obr oraz wartość prędkości obrotowej wrzeciona od 3183 obr/min do 3500 obr/min, uzyskano najmniejszą wartość szerokości zadzioru. W tym przypadku zmiana prędkości obrotowej wrzeciona lub posuwu na obrót wpływa drastycznie na zmianę wartości wyżej wymienionego parametru.

Rys. 120. Wpływ parametrów technologicznych w trzeciej kinematyce na szerokość zadzioru na wyjściu otworu w stali ulepszonej cieplnie 40HM+QT na podstawie równania (78)

Analizując rys. 120 dla trzeciego układu kinematycznego stwierdzono, że stosując posuw na obrót od 0,12 mm/obr do 0,14 mm/obr oraz wartość prędkości obrotowej wrzeciona 3500 obr/min do 4300 obr/min, uzyskano najmniejszą wartość szerokości zadzioru. W tym przypadku zmiana prędkości obrotowej wrzeciona lub posuwu na obrót wpływa drastycznie na zmianę wartości szerokości zadzioru.

Rys. 121. Wpływ parametrów technologicznych w pierwszej kinematyce na wysokość zadzioru na wyjściu otworu w stopie mosiądzu MO58 na podstawie równania (79)

Analizując rys. 121 dla pierwszego układu kinematycznego stwierdzono, że stosując największy posuw na obrót 0,14 mm/obr oraz wartość prędkości obrotowej wrzeciona od 3500 obr/min do 4100 obr/min, uzyskano najmniejszą wartość wysokości zadzioru. W tym przypadku zmiana posuwu na obrót wpływa drastycznie na zmianę wartości wysokości zadzioru.

Rys. 122. Wpływ parametrów technologicznych w drugiej kinematyce na wysokość zadzioru na wyjściu otworu w stopie mosiądzu MO58 na podstawie równania (79)

Analizując rys. 122 dla drugiego układu kinematycznego stwierdzono, że stosując największy posuw na obrót 0,14 mm/obr oraz wartość prędkości obrotowej wrzeciona od 3183 obr/min do 3800 obr/min, uzyskano najmniejszą wartość wysokości zadzioru. W tym przypadku najmniejszą wartość wysokości zadzioru możemy uzyskać dla posuwu na obrót 0,1 mm/obr oraz wartości prędkości obrotowej wrzeciona wynoszącej 3900 obr/min.

Rys. 123. Wpływ parametrów technologicznych w trzeciej kinematyce na wysokość zadzioru na wyjściu otworu w stopie mosiądzu MO58 na podstawie równania (79)

Analizując rys. 123 dla pierwszego układu kinematycznego stwierdzono, że najmniejszą wartość parametru h_0 uzyskano dwa dwóch zestawów parametrów technologicznych. Pierwszy zestaw dla największego badanego posuwu na obrót 0,14 mm/obr oraz prędkości obrotowej wrzeciona 3550-4150 obr/min. Drugi zestaw to najmniejszy posuw na obrót 0,1 mm/obr oraz prędkość obrotowa wrzeciona od 4450 do 4650 obr/min.

Wnioski:

- 1. Badania symulacyjne równania (78) oraz (79) wykazały różne przedziały odpowiednich zakresów (dla których to uzyskano najmniejsze wartości) parametrów technologicznych w stosunku do układu kinematycznego.
- 2. Dla szerokości zadzioru na wyjściu otworu w stali ulepszonej cieplnie 40HM+QT odpowiednie zakresy parametrów technologicznych dla każdego układu kinematycznego technologicznych były następujące: dla KIN I $n \in < 3500; 4200 >, f_n \in < 0,12; 0,135 >,$ dla KIN II $n \in < 3183; 3500 >, f_n < 0,13; 0,14 >$ oraz dla KIN III $n \in < 3500; 4300 >, f_n \in < 0,12; 0,14 >.$
- 3. Dla wysokości zadzioru na wyjściu otworu w stopie mosiądzu MO58 odpowiednie zakresy parametrów technologicznych były następujące: dla KIN I $n \in < 3500; 4100 > , f_n = 0,14$ dla KIN II $n \in < 3183; 3800 > , f_n = 0,14$

5.4. Szczegółowa analiza odchyłki walcowości

Zgodnie z normą [N3] rozróżniamy dwie grupy ocen zarysów walcowości (podrozdział 1.2). Postanowiono ocenić odchyłkę walcowości dla stopu aluminium i mosiądzu względem odchyłki promieniowej. Na rys. 124 przedstawiono dwie najczęściej występujące odchyłki promieniowe. Natomiast dla stali C45, stali ulepszonej cieplnie oraz Inconelu 718 zostanie przedstawiona analiza względem drugiej grupy a mianowicie zniekształcenia linii środkowej otworu, co zostało przedstawione na rys. 127.

Rys. 124. Odchyłki promieniowe a) baryłkowość dla TiII5A, b) stożkowość dla TiI4M

Rys. 125. Odchyłki promieniowe w stopie aluminium PA6

Rys. 126. Odchyłki promieniowe w mosiądzu MO58

Z rys. 125 można zauważyć, że baryłkowość występuje w 100% niezależnie do zastosowanego układu kinematycznego. Na rys. 126 przedstawiono dwie odchyłki stożkowość oraz baryłkowość (tylko one wystąpiły) względem różnych układów kinematycznych. W każdym układzie kinematycznym dominowała baryłkowość dla kinematyki pierwszej i trzeciej 67% oraz dla kinematyki drugiej 89%. Stożkowość dla kinematyki pierwszej i trzeciej wyniosła 33%, natomiast dla kinematyki drugiej wyniosła 11%.

Rys. 127. Zarysy walcowości w stosunku do zniekształcenia linii środkowej a) pojedyncze dla TiIII2S b) podwójne dla TiII6Q

Rys. 128. Grupy zarysów walcowości w stosunku do zniekształcenia linii środkowej w stali C45

Rys. 129. Grupy zarysów walcowości w stosunku do zniekształcenia linii środkowej w stali ulepszonej cieplnie 40HM+QT

Rys. 130. Grupy zarysów walcowości w stosunku do zniekształcenia linii środkowej w Inconelu 718

Na rys. 128 dla kinematyki trzeciej, widać dominację podwójnego zniekształcenia linii środkowej na poziomie 78%. Reszta w tej kinematyce przypadła pojedynczemu zniekształceniu linii środkowej (22%). Dla kinematyki pierwszej i drugiej otrzymano te same wartości 56% dla podwójnego zniekształcenia linii środka oraz 44% dla pojedynczego zniekształcenia linii środka. Z rys. 129 zauważono, że niezależnie od kinematyki dominuje podwójne zniekształcenie linii środka na poziomie 67% wszystkich badanych próbek. Natomiast pojedyncze zniekształcenie linii środka jest na poziomie 33% dla stali ulepszonej cieplnie. Na rys. 130 widać dominację pojedynczego zniekształcenia linii środków. Dla kinematyki pierwszej wynosi 77%, dla kinematyki drugiej 88% oraz dla kinematyki trzeciej 66%.

Wnioski:

- 1. Niezależnie od zastosowanego układu kinematycznego, uzyskano wszędzie zarys walcowości zwany baryłkowością.
- W mosiądzu MO58 zależnie od układu kinematycznego, uzyskano następujący rozkład pomiędzy stożkowością a baryłkowością otworów: dla KIN I i KIN III stosunek 33% do 77%, natomiast dla KIN II stosunek 11% do 99%. Niezależnie od układu kinematycznego dominowała baryłkowość.
- Dla stali C45 dominowało podwójne zniekształcenie linii środka: dla KIN I i KIN II wyniosło ono 56%, natomiast reszta przypadła pojedynczemu zniekształceniu, dla KIN III wyniosło ono aż 78%.
- 4. W stali ulepszonej cieplnie 40HM+QT niezależnie od wybranego układu kinematycznego dominował zarys walcowości podwójnego zniekształcenia linii środka na poziomie 67%, reszta przypadła pojedynczemu zniekształceniu linii środka.
- Dla Inconelu 718 dominowało pojedyncze zniekształcenie linii środka: dla KIN I wyniosło ono 77%, dla KIN II wyniosło ono 88%, natomiast dla KIN III

wyniosło 66%, pozostałe wartości przypadły podwójnemu zniekształceniu linii środka.

5.5. Analiza przypadków odchyłek okrągłości

Odchyłkę okrągłości można ocenić ze względu na kształt okręgu (w przypadku prowadzonych badań – otworu). W podrozdziale 1.2. scharakteryzowano dokładnie najbardziej znane przypadki odchyłki okrągłości. Zauważono, że nie wszystkie odchyłki okrągłości można jednoznacznie ocenić ze względu na kształt okręgu. Czasami pojawia się dylemat czy daną odchyłkę zakwalifikować do owalności czy trójgraniastości (rys. 131.) Dlatego też postanowiono wykonać analizę długości fal inaczej nazywana analizą Fouriera. Jest to analiza propagacji wielu sygnałów składających się z wielu sinusoid i cosinusoid. W profilu okrągłości jest trochę inaczej ponieważ początek i koniec sygnału łączą się. W tym przypadku podstawową długością fali szeregu Fouriera stanowi obwód okręgu lub po prostu 1 fala na obrót czyli UPR. W moim przypadku rozkładam do 15 harmonicznej ponieważ zastosowałem filtr do 15 UPR.

Rys. 131. Okrągłość dla TiIII9M_01

Ze względu na obszerność badań (8100 wartości wyników składowych harmonicznych z zakresu 1 do 15) przedstawiono wyniki jako wykresy, nie zamieszczając szczegółowych wartości dla każdej składowej harmonicznej.

Rys. 133. Odchyłka okrągłości dla otworów w stali ulepszonej cieplnie 40HM+QT

Rys. 134. Odchyłka okrągłości dla otworów w stopie aluminium PA6

Rys. 136. Odchyłka okrągłości dla otworów w Inconelu 718

Legenda dla rys. 132-136. Okrąg 1 – okrąg na wyjściu otworu, okrąg 2 – okrąg bliżej wyjścia, okrąg 3 – środek otworu, okrąg 4 – okrąg bliżej wejścia, okrąg 5 – okrąg na wejściu, "2" oznacza owalność, "3" oznacza trójgraniastość, "4" oznacza czterograniastość, "5" oznacza pięciograniastość, "6" oznacza sześciograniastość.

 przypadła owalności 33%. W kinematyce ostatniej trójgraniastość wyniosła 56% wszystkich wyników, pozostałe wartości przypadły owalności 33% oraz czterograniastości 11%. W dalszej części otworu wyniosła ona 67%, natomiast dla owalności wyniosła 33%. Po środku otworu rozkład jest taki sam jak dla kinematyki drugiej. Bliżej wejścia otworu trójgraniastość niemalże w całości zdominowała wyniosła ona 89%, reszta przypadła pięciograniastości na poziomie 11%. Na wejściu otworu wyniosła ona 56%, reszta przypadła owalności 33% oraz czterograniastości 11%.

W stali ulepszonej cieplnie również dominowała trójgraniastość dla kinematyki pierwszej. Dla pierwszej kinematyki wyniosła ona 89%, reszta przypadła owalności na poziomie 11%. W dalszej części otworu wyniosła 56%, reszta przypadła owalności 33% oraz pięciograniastości 11%. W środku otworu uzyskała wartość 56%, 33% otrzymała pieciograniastość a reszta przypadła czterograniastości na poziomie 11%. Bliżej wejścia otworu trójgraniastość zdominowała prawie całkowicie 89%, reszta przypadła pięciograniastości na poziomie 11%. Na wejściu otworu trójgraniastość osiągnęła 78%, reszta przypadła dla owalności oraz czterograniastości na takich samych poziomach 11%. Dla drugiej kinematyki trójgraniastość na wyjściu osiągnęła podobny wynik co dla owalności 56% do 44%. W dalszej części otworu trójgraniastość całkowicie zdominowała inne odchyłki okrągłości. Dopiero na początku otworu dominacja trójgraniastości spadła do 89%, reszta przypadła owalności na poziomie 11%. Dla ostatniej kinematyki na wyjściu otworu trójgraniastość osiągnęła 67% wszystkich wartości, reszta przypadła owalności 33%. W dalszej części otworu trójgraniastość osiągnęła taką sama wartość co na wyjściu, resztę otrzymała owalność na poziomie 22% oraz pięciograniastość 11%. W środku i bliżej wejścia otworu prawie całkowicie zdominowała trójgraniastość 89%, reszta przypadła owalności 11%. Na wejściu trójgraniastość wynosiła tylko 45%, owalność 33%, a reszta przypadła czterograniastości i pięciograniastości po 11%.

W stopie aluminium PA6 pojawiła się w niektórych miejscach sześciograniastość otworu. Dla pierwszej kinematyki na wyjściu dominowała owalność otworu 56%, reszta przypadła trójgraniastości 44%. W dalszej części otworu owalność oraz trójgraniastość uzyskały po 44%, reszta przypadła pięciograniastości 12%. W środku otworu owalność uzyskała 45%, trójgraniastość 33%, czterograniastość wraz z pięciograniastością po 11%. Bliżej wejścia również dominowała owalność 45%, wraz z pięciograniastością po 22%, resztę otrzymała trójgraniastość sześciograniastość na poziomie 11%. Na wejściu owalność wyniosła 45% wszystkich wyników, następnie trójgraniastość 33%, reszta przypadła po równo czterograniastości oraz pięciograniastości po 11%. Dla kinematyki drugiej na wyjściu otworu dominowała trójgraniastość 56%, owalność 33%, reszta przypadła czterograniastości 11%. W dalszej części dominowała owalność 45%, trójgraniastość 33%, reszta przypadła dla czterograniastości i pięciograniastości po 11%. W środku otworu zdominowała prawie całkowicie owalność 89%, reszta przypadła czterograniastości 11%. Bliżej wejścia większa wartość osiągnęła

trójgraniastość 56%, następnie była owalność 33%, reszta przypadła sześciograniastości 11%. Na wejściu otworu owalność wraz z trójgraniastością osiągnęły po 44%, natomiast reszta przypadłą czterograniastości 11%. W trzeciej kinematyce na wyjściu dominowała trójgraniastość 67%, reszta przypadła owalności na poziomie 33%. W dalszej części otworu dominowała również trójgraniastość z taką samą wartością co na wyjściu, jednakże pojawiła się sześciograniastość na wysokim poziomie 33%. W środku otworu dominowała owalność na poziomie 67%, reszta przypadła dla trójgraniastości, pięciograniastości oraz sześciograniastości po 11%. Bliżej wejścia otworu trójgraniastość wyniosła 56%, owalność 33% oraz pięciograniastości, czterograniastości oraz sześciograniastości po 11%.

W mosiadzu na wyjściu i w środku otworu dominowała trójgraniastość, jednakże bliżej wejścia dominacja ta spadała na korzyść owalności. W pierwszej kinematyce trójgraniastość zdominowała całkowicie wyniosła 100% wszystkich badań. W dalszej części wyniosła ona 67%, reszta przypadła owalności, czterograniastości oraz pięciograniastości po 11%. W środku otworu wyniosła ona również 67%, reszta przypadła owalności 33%. Bliżej wejścia otworu dominacje przejeła owalność 56%, reszta przypadła trójgraniastości na poziomie 44%. Na wejściu trójgraniastość wyniosła 45%, owalność 33%, resztę otrzymały czterograniastość oraz pięciograniastość po 11%. W kinematyce drugiej na wyjściu otworu również dominowała trójgraniastość 67%, owalność otrzymała 22%, reszta przypadła sześciograniastości na poziomie 11%. W dalszej części otworu zdominowała całkowicie trójgraniastość 100%. W środku otworu owalność wraz z trójgraniastością uzyskały po 44%, reszta przypadła czterograniastości na poziomie 12%. Bliżej wejścia otworu owalność uzyskała 67%, trójgraniastość 22% oraz pojawiła się sześciograniastość na poziomie 11%. Na wejściu otworu trójgraniastość wyniosła 56%, reszta przypadła owalności 44%. W ostatniej kinematyce na wyjściu otworu dominowała trójgraniastość 89%, reszta przypadła owalności 11%. W dalszej części otworu trójgraniastość osiągnęła 78%, reszta przypadła owalności i czterograniastości po 11%. W środku otworu również dominowała trójgraniastość 67%, owalność miała 33% oraz sześciograniastość 11%. Bliżej wejścia dominowała owalność 78%, reszta przypadła trójgraniastości 22%. Na wejściu również dominowała owalność 45%, trójgraniastość uzyskała 33%, reszta przypadła czterograniastości oraz sześciograniastości po 11%.

W Inconelu 718 dominowała owalność na wejściu otworu. W pierwszej kinematyce na wyjściu otworu wyniosła ona 33%, reszta przypadła trójgraniastości na poziomie 67%. W dalszej części otworu owalność i trójgraniastość uzyskały po 44%, reszta przypadła czterograniastości 22%. W środku otworu zdominowała owalność 55%, trójgraniastość 33%, reszta przypadła czterograniastości 11%. Bliżej wejścia otworu owalność zdominowała całkowicie przyjęła ona wartość 100%. Na wejściu otworu owalność osiągnęła 99%, reszta przypadła dla trójgraniastości 11% Dla drugiej kinematyki trójgraniastość na wyjściu osiągnęła wartość 55%, reszta przypadła owalności 44%. W dalszej części otworu owalność wyniosła aż 77%,

reszta przypadła trójgraniastości. W środku otworu dominowała również owalność 66%, jednakże pojawiła się w niektórych przypadkach pięciograniastość 22%, reszta przypadła trójgraniastości. Bliżej wejścia otworu dominowała również owalność 77%, reszta przypadła w równym podziale dla trójgraniastości i czterograniastości 11%. Na wejściu owalność uzyskała 66% wszystkich przypadków, reszta przypadła trójgraniastości. Dla trzeciej kinematyki na wyjściu najwięcej przypadków było trójgraniastości 55%, jednakże owalność była na dosyć bliskim poziomie 44%. W dalszej części otworu również najwięcej przypadków było trójgraniastości 55%, reszta przypadła owalność 55%, reszta przypadła owalności 33% oraz czterograniastości 11%. Na środku otworu dominowała owalność 55%, reszta przypadła pięciograniastości 22%, trójgraniastości 11% oraz czterograniastości 11%. Bliżej wejścia otworu dominowała również owalność 66%, reszta przypadków to trójgraniastości. Tak samo na wejściu owalność 77%, reszta to trójgraniastość.

Wnioski:

- 1. Stosując analizę Fouriera oceniono w sposób przejrzysty przypadki odchyłek okrągłości.
- 2. W stali C45 oraz stali ulepszonej cieplnie 40HM+QT w każdej części otworu dominowała trójgraniastość.
- W stopie aluminium PA6 po środku otworu oraz na końcu pojawiła się sześciograniastość dla KIN II i KIN III. W pozostałych miejscach najczęściej wystąpiła owalność oraz trójgraniastość otworu.
- 4. Dla otworów wykonanych w mosiądzu MO58 na wyjściu otworu dominowała prawie całkowicie trójgraniastość. W połowie oraz na początku otworu dominowały wspólnie owalność wraz z trójgraniastością na podobnych poziomach. Dla ww. materiału w KIN II i KIN III pojawiła się również sześciograniastość w niektórych przypadkach.
- 5. W Inconelu 718 odchyłki okrągłości na wyjściu otworu cechowały się rozkładem pomiędzy trójgraniastością oraz owalnością, z zaznaczeniem większego udziału trójgraniastości. W środku otworu oraz na wejściu niezależnie od układu kinematycznego dominowała owalność otworu.

5.6. Optymalizacja wielokryterialna – Grey Relational Analysis

Analiza szarych relacji może być wykorzystywana do rozwiązywania skomplikowanych współzależności pomiędzy wyznaczonymi danymi. Dzięki tej analizie, szara relacyjna ocena jest korzystnie zdefiniowana jako wskaźnik wielu cech wydajności. W powyższej analizie złożony problem optymalizacji wielu odpowiedzi może zostać uproszczony do optymalizacji pojedynczej odpowiedzi GRA. Parametry będą przetwarzane stosując równanie (83) ze względu na to, że wszystkie wartości wyjściowe na najmniejszym poziomie są najlepsze (smaller the better). W celu przeniesienia danych wejściowych (CYL_t, STR_t, RON_t, DE, Rz, Rt, Ra, h₀, b_f) do porównywalnej sekwencji przetworzono je w zakresie od zera do jednego, co przedstawiono w tabelach 81–85.

$x_{i,i} = \frac{\max(y_{ij}) - y_{ij}}{\max(y_{ij}) - y_{ij}}$	(83)
$x_{ij} = \frac{1}{\max(y_{ij}) - \min(y_{ij})}$	(85)

Tabela 81. Normalizacja danych dla stali C45

		Normalizacja danych									
Kod	CYLt	STR _t	RON _t	DE	Rz	Rt	Ra	h_0	b_{f}		
TiI1S	0,811	0,771	0,000	0,632	0,846	0,923	0,813	0,430	0,000		
TiII1S	0,884	0,933	0,333	0,706	0,735	0,753	0,688	0,116	0,756		
TiIII1S	0,813	0,980	0,467	0,853	0,761	0,968	0,538	0,151	0,463		
TiI2S	0,955	0,846	0,556	0,809	0,511	0,660	0,513	0,709	0,707		
TiII2S	1,000	0,947	0,533	0,765	0,544	0,840	0,450	0,581	1,000		
TiIII2S	0,972	1,000	0,933	0,618	0,281	0,642	0,034	0,419	0,756		
TiI3S	0,939	0,953	0,400	1,000	0,746	0,632	0,772	0,826	0,618		
TiII3S	0,946	0,838	0,556	0,809	1,000	1,000	0,800	0,221	0,870		
TiIII3S	0,759	0,844	0,733	0,603	0,780	0,719	0,538	0,651	0,797		
TiI4S	0,955	0,941	0,711	0,618	0,103	0,649	0,744	0,581	0,520		
TiII4S	0,955	0,916	0,644	0,662	0,155	0,070	0,322	0,709	0,138		
TiIII4S	0,835	0,877	0,867	0,471	0,278	0,422	0,169	0,674	0,407		
TiI5S	0,839	0,821	0,689	0,750	0,000	0,474	0,494	0,779	0,382		
TiII5S	0,761	0,802	1,000	0,485	0,134	0,449	0,425	0,814	0,520		
TiIII5S	0,827	0,832	0,956	0,559	0,246	0,444	0,250	0,605	0,455		
TiI6S	0,662	0,673	0,622	0,912	0,522	0,483	0,763	1,000	0,138		
TiII6S	0,905	0,757	0,711	0,676	0,555	0,645	0,516	0,884	0,439		
TiIII6S	0,785	0,679	0,667	0,471	0,651	0,550	0,600	0,593	0,163		
TiI7S	0,811	0,768	0,133	0,000	0,544	0,817	0,563	0,000	0,943		
TiII7S	0,742	0,723	0,533	0,368	0,192	0,000	0,634	0,488	0,236		
TiIII7S	0,634	0,645	0,644	0,500	0,078	0,498	0,000	0,337	0,431		
TiI8S	0,714	0,740	0,533	0,471	0,066	0,795	0,703	0,744	0,585		
TiII8S	0,702	0,676	0,511	0,368	0,109	0,496	0,353	0,419	0,138		
TiIII8S	0,582	0,436	0,711	0,162	0,257	0,612	0,309	0,570	0,276		
TiI9S	0,376	0,489	0,400	0,912	0,608	0,923	1,000	0,012	0,439		
TiII9S	0,359	0,405	0,356	0,118	0,866	0,976	0,750	0,198	0,382		
TiIII9S	0,000	0,000	0,267	0,029	0,786	0,992	0,678	0,372	0,203		

				Noi	rmalizacj	a danych			
Kod	CYL_t	STR _t	RON _t	DE	Rz	Rt	Ra	\mathbf{h}_0	b_{f}
TiI1Q	0,871	0,790	0,500	0,528	0,414	1,000	0,163	0,489	0,065
TiII1Q	0,696	0,692	0,611	0,306	0,868	0,372	0,500	0,085	0,252
TiIII1Q	0,696	0,692	0,778	0,389	0,723	0,327	0,531	0,298	0,505
TiI2Q	0,596	0,420	0,167	0,806	0,294	0,314	0,294	0,702	0,617
TiII2Q	0,731	0,643	0,278	0,722	0,831	0,185	0,750	0,574	0,860
TiIII2Q	0,526	0,517	0,000	0,667	0,668	0,101	0,363	0,362	0,785
TiI3Q	0,485	0,706	0,444	0,722	0,819	0,367	0,438	0,532	0,224
TiII3Q	0,667	0,517	0,167	0,889	0,745	0,320	0,594	0,213	0,813
TiIII3Q	0,813	0,734	0,111	0,472	0,543	0,136	0,588	0,255	0,720
TiI4Q	1,000	1,000	0,333	0,694	0,183	0,417	0,031	0,660	0,159
TiII4Q	0,865	0,846	0,333	0,722	0,409	0,082	0,813	0,404	0,430
TiIII4Q	0,591	0,497	0,722	0,389	0,450	0,243	0,413	0,617	0,879
TiI5Q	0,865	0,853	0,500	0,833	0,000	0,250	0,000	0,957	0,551
TiII5Q	0,696	0,678	0,222	0,778	0,440	0,136	0,481	0,702	0,262
TiIII5Q	0,725	0,748	0,444	0,639	0,053	0,000	0,494	0,511	1,000
TiI6Q	0,836	0,629	0,667	0,861	0,226	0,221	0,263	1,000	0,402
TiII6Q	0,684	0,566	0,222	1,000	0,223	0,199	0,719	0,872	0,720
TiIII6Q	0,643	0,287	0,389	0,611	0,314	0,267	0,644	0,723	0,757
TiI7Q	0,708	0,776	0,611	0,500	0,452	0,276	0,794	0,255	0,411
TiII7Q	0,573	0,594	0,556	0,639	0,947	0,153	0,881	0,149	0,131
TiIII7Q	0,351	0,727	0,611	0,222	0,472	0,155	0,763	0,000	0,785
TiI8Q	0,637	0,734	0,889	0,667	0,591	0,126	0,338	0,979	0,093
TiII8Q	0,626	0,608	0,556	0,639	0,701	0,195	0,944	0,191	0,411
TiIII8Q	0,696	0,832	0,500	0,639	0,623	0,144	0,475	0,851	0,598
TiI9Q	0,456	0,343	1,000	0,778	0,766	0,179	0,644	0,638	0,000
TiII9Q	0,023	0,007	0,389	0,194	1,000	0,086	0,969	0,723	0,626
TiIII9Q	0,000	0,000	0,500	0,000	0,974	0,241	1,000	0,915	0,458

Tabela 82. Normalizacja danych dla stali ulepszonej cieplnie 40HM + QT Normalizacja danych

			No	ormalizacj	a danych		
Kod	CYLt	STRt	RONt	DE	Rz	Rt	Ra
TiI1A	1,000	0,946	0,732	0,984	0,448	0,312	0,238
TiII1A	0,982	1,000	0,561	1,000	0,330	0,520	0,301
TiIII1A	0,667	0,473	0,252	0,643	0,000	0,070	0,000
TiI2A	0,400	0,558	0,089	0,442	0,186	0,372	0,225
TiII2A	0,452	0,592	0,171	0,675	0,371	0,468	0,510
TiIII2A	0,730	0,884	0,049	0,648	0,135	0,280	0,222
TiI3A	0,364	0,439	0,293	0,447	0,561	0,890	0,819
TiII3A	0,539	0,612	0,179	0,503	0,668	0,700	0,742
TiIII3A	0,591	0,650	0,146	0,487	0,621	0,757	0,608
TiI4A	0,648	0,595	0,488	0,389	0,503	0,501	0,330
TiII4A	0,648	0,537	0,146	0,516	0,088	0,571	0,303
TiIII4A	0,406	0,425	0,252	0,574	0,381	0,208	0,314
TiI5A	0,142	0,078	0,000	0,151	0,451	0,626	0,440
TiII5A	0,258	0,524	0,211	0,280	0,274	0,646	0,624
TiIII5A	0,000	0,000	0,008	0,000	0,306	0,257	0,205
TiI6A	0,394	0,282	0,260	0,220	0,719	0,774	0,973
TiII6A	0,273	0,221	0,114	0,426	0,749	0,784	0,784
TiIII6A	0,306	0,357	0,000	0,146	0,779	1,000	0,851
TiI7A	0,712	0,704	0,577	0,434	0,644	0,259	0,433
TiII7A	0,518	0,643	0,577	0,484	0,486	0,472	0,373
TiIII7A	0,658	0,449	0,285	0,156	0,153	0,000	0,179
TiI8A	0,345	0,469	0,447	0,106	0,419	0,119	0,636
TiII8A	0,355	0,524	0,504	0,233	0,535	0,160	0,660
TiIII8A	0,367	0,235	0,455	0,071	0,377	0,190	0,523
TiI9A	0,394	0,279	0,423	0,381	0,755	0,644	1,000
TiII9A	0,233	0,163	1,000	0,243	1,000	0,838	0,897
TiIII9A	0,473	0,207	0,992	0,222	0,927	0,843	0,892

Tabela 83. Normalizacja danych dla stopu aluminium PA6

				Noi	malizacj	a danych			
Kod	CYL_t	STR _t	RON_t	DE	Rz	Rt	Ra	h_0	b_{f}
TiI1M	0,388	0,285	0,622	0,564	0,743	0,798	0,667	0,551	0,206
TiII1M	0,329	0,240	0,511	0,433	0,643	0,754	0,531	0,010	0,000
TiIII1M	1,000	0,740	0,667	0,588	0,365	0,630	0,265	0,824	0,472
TiI2M	0,329	0,000	0,600	0,643	0,571	0,548	0,495	0,795	0,345
TiII2M	0,369	0,231	0,189	0,360	0,361	0,000	0,322	0,444	0,060
TiIII2M	0,369	0,830	0,000	0,210	0,153	0,161	0,165	0,946	0,575
TiI3M	0,210	0,202	0,811	0,260	0,688	0,616	0,480	0,790	0,437
TiII3M	0,000	0,587	0,800	0,143	0,468	0,334	0,287	0,532	0,607
TiIII3M	0,063	0,641	0,278	0,031	0,297	0,344	0,218	1,000	0,437
TiI4M	0,622	0,585	0,878	0,293	0,725	0,903	0,738	0,234	0,345
TiII4M	0,435	0,509	1,000	0,271	0,883	1,000	0,825	0,107	0,012
TiIII4M	0,612	0,850	0,833	0,031	0,387	0,432	0,408	0,556	0,437
TiI5M	0,095	0,280	0,644	0,450	0,485	0,767	0,469	0,507	0,226
TiII5M	0,356	0,220	0,789	0,460	0,596	0,716	0,571	0,556	0,107
TiIII5M	0,399	0,590	0,356	0,226	0,238	0,440	0,105	0,756	0,425
TiI6M	0,386	0,444	0,500	0,421	0,561	0,776	0,071	0,024	0,028
TiII6M	0,318	0,350	0,744	0,179	0,449	0,452	0,473	0,000	0,238
TiIII6M	0,214	0,556	0,556	0,000	0,399	0,294	0,473	0,444	0,397
TiI7M	0,413	0,899	0,833	0,421	0,692	0,629	0,754	0,571	0,381
TiII7M	0,331	0,720	1,000	0,336	1,000	0,931	1,000	0,273	0,583
TiIII7M	0,600	1,000	0,811	0,114	0,000	0,310	0,376	0,868	1,000
TiI8M	0,386	0,583	0,267	1,000	0,341	0,253	0,070	0,307	0,607
TiII8M	0,642	0,558	0,456	0,210	0,414	0,645	0,453	0,302	0,813
TiIII8M	0,544	0,675	0,411	0,276	0,121	0,209	0,275	0,776	0,766
TiI9M	0,804	0,825	0,711	0,786	0,636	0,634	0,127	0,454	0,659
TiII9M	0,584	0,531	0,711	0,395	0,557	0,626	0,373	0,473	0,806
TiIII9M	0,691	0,722	0,311	0,271	0,221	0,441	0,000	0,327	0,810

Tabela 84. Normalizacja danych dla stopu mosiądzu MO58

		Normalizacja danych								
Kod	CYL_t	STR _t	RON _t	DE	Rz	Rt	Ra	\mathbf{h}_0	b_{f}	
TiI1I	0,578	0,330	0,029	0,642	0,585	0,459	0,395	0,564	0,973	
TiII1I	0,301	0,108	0,229	0,580	1,000	1,000	1,000	0,970	0,980	
TiII11	0,305	0,472	0,114	0,548	0,828	0,677	0,878	0,931	1,000	
TiI2I	0,015	0,210	0,429	0,735	0,738	0,487	0,384	0,000	0,899	
TiII2I	0,640	0,481	0,286	0,827	0,765	0,903	0,629	0,931	0,764	
TiIII2I	0,936	0,948	0,400	1,000	0,805	0,646	0,724	0,366	0,905	
TiI3I	0,548	0,336	0,000	0,762	0,912	0,744	0,639	0,594	0,892	
TiII3I	0,704	0,747	0,743	0,917	0,834	0,901	0,701	0,990	0,743	
TiIII3I	1,000	0,907	0,600	0,980	0,800	0,724	0,684	0,871	0,885	
TiI4I	0,851	0,997	0,200	0,817	0,244	0,275	0,349	1,000	0,858	
TiII4I	0,802	0,941	0,371	0,839	0,435	0,426	0,498	0,535	0,804	
TiIII4I	0,763	0,799	0,486	0,877	0,304	0,223	0,456	0,861	0,723	
TiI5I	0,831	0,923	0,571	0,811	0,456	0,196	0,345	0,802	0,649	
TiII5I	0,934	1,000	0,629	0,768	0,370	0,270	0,362	0,406	0,615	
TiIII5I	0,821	0,951	0,657	0,892	0,457	0,228	0,494	0,812	0,514	
TiI6I	0,755	0,877	0,457	0,750	0,596	0,406	0,495	0,584	0,561	
TiII6I	0,702	0,769	1,000	0,708	0,495	0,448	0,352	0,990	0,500	
TiIII6I	0,791	0,938	0,657	0,788	0,469	0,327	0,448	0,594	0,601	
TiI7I	0,158	0,590	0,629	0,139	0,230	0,042	0,109	0,455	0,696	
TiII7I	0,320	0,664	0,429	0,461	0,000	0,236	0,093	0,455	0,730	
TiIII7I	0,358	0,565	0,486	0,368	0,330	0,174	0,195	0,446	0,723	
TiI8I	0,224	0,028	0,829	0,000	0,403	0,295	0,283	0,267	0,628	
TiII8I	0,164	0,420	0,543	0,392	0,158	0,020	0,000	0,119	0,649	
TiIII8I	0,111	0,123	0,429	0,305	0,223	0,000	0,281	0,366	0,000	
TiI9I	0,000	0,269	0,371	0,179	0,618	0,477	0,595	0,020	0,486	
TiII9I	0,085	0,000	0,886	0,452	0,285	0,402	0,281	0,248	0,588	
TiIII9I	0,245	0,358	0,514	0,339	0,427	0,278	0,442	0,703	0,723	

Tabela 85. Normalizacja danych dla Inconelu 718

Na podstawie tabel (81–85) policzono oraz przedstawiono sekwencje odchyleń jako tabele (86–90). Wykorzystano wzór (84).

۸ — 1	$\max(y_{ij}) - y_{ij}$	(94)
$\Delta_{ij} = 1 =$	$\frac{1}{\max(y_{ij}) - \min(y_{ij})}$	(04)

Tabela 86. Sekwencje odchyleń dla stali C45

			Sekwencje odchyleń									
Kod	CYLt	STR _t	RON _t	DE	Rz	Rt	Ra	\mathbf{h}_0	b_{f}			
TiI1S	0,189	0,229	1,000	0,368	0,154	0,077	0,188	0,570	1,000			
TiII1S	0,116	0,067	0,667	0,294	0,265	0,247	0,313	0,884	0,244			
TiIII1S	0,187	0,020	0,533	0,147	0,239	0,032	0,463	0,849	0,537			
TiI2S	0,045	0,154	0,444	0,191	0,489	0,340	0,488	0,291	0,293			
TiII2S	0,000	0,053	0,467	0,235	0,456	0,160	0,550	0,419	0,000			
TiIII2S	0,028	0,000	0,067	0,382	0,719	0,358	0,966	0,581	0,244			
TiI3S	0,061	0,047	0,600	0,000	0,254	0,368	0,228	0,174	0,382			
TiII3S	0,054	0,162	0,444	0,191	0,000	0,000	0,200	0,779	0,130			
TiIII3S	0,241	0,156	0,267	0,397	0,220	0,281	0,463	0,349	0,203			
TiI4S	0,045	0,059	0,289	0,382	0,897	0,351	0,256	0,419	0,480			
TiII4S	0,045	0,084	0,356	0,338	0,845	0,930	0,678	0,291	0,862			
TiIII4S	0,165	0,123	0,133	0,529	0,722	0,578	0,831	0,326	0,593			
TiI5S	0,161	0,179	0,311	0,250	1,000	0,526	0,506	0,221	0,618			
TiII5S	0,239	0,198	0,000	0,515	0,866	0,551	0,575	0,186	0,480			
TiIII5S	0,173	0,168	0,044	0,441	0,754	0,556	0,750	0,395	0,545			
TiI6S	0,338	0,327	0,378	0,088	0,478	0,517	0,238	0,000	0,862			
TiII6S	0,095	0,243	0,289	0,324	0,445	0,355	0,484	0,116	0,561			
TiIII6S	0,215	0,321	0,333	0,529	0,349	0,450	0,400	0,407	0,837			
TiI7S	0,189	0,232	0,867	1,000	0,456	0,183	0,438	1,000	0,057			
TiII7S	0,258	0,277	0,467	0,632	0,808	1,000	0,366	0,512	0,764			
TiIII7S	0,366	0,355	0,356	0,500	0,922	0,502	1,000	0,663	0,569			
TiI8S	0,286	0,260	0,467	0,529	0,934	0,205	0,297	0,256	0,415			
TiII8S	0,298	0,324	0,489	0,632	0,891	0,504	0,647	0,581	0,862			
TiIII8S	0,418	0,564	0,289	0,838	0,743	0,388	0,691	0,430	0,724			
TiI9S	0,624	0,511	0,600	0,088	0,392	0,077	0,000	0,988	0,561			
TiII9S	0,641	0,595	0,644	0,882	0,134	0,024	0,250	0,802	0,618			
TiIII9S	1,000	1,000	0,733	0,971	0,214	0,008	0,322	0,628	0,797			

				Sek	wencje o	odchyleń			
Kod	CYL_t	STR _t	RON _t	DE	Rz	Rt	Ra	\mathbf{h}_0	b_{f}
TiI1Q	0,129	0,210	0,500	0,472	0,586	0,000	0,838	0,511	0,935
TiII1Q	0,304	0,308	0,389	0,694	0,132	0,628	0,500	0,915	0,748
TiIII1Q	0,304	0,308	0,222	0,611	0,277	0,673	0,469	0,702	0,495
TiI2Q	0,404	0,580	0,833	0,194	0,706	0,686	0,706	0,298	0,383
TiII2Q	0,269	0,357	0,722	0,278	0,169	0,815	0,250	0,426	0,140
TiIII2Q	0,474	0,483	1,000	0,333	0,332	0,899	0,638	0,638	0,215
TiI3Q	0,515	0,294	0,556	0,278	0,181	0,633	0,563	0,468	0,776
TiII3Q	0,333	0,483	0,833	0,111	0,255	0,680	0,406	0,787	0,187
TiIII3Q	0,187	0,266	0,889	0,528	0,457	0,864	0,413	0,745	0,280
TiI4Q	0,000	0,000	0,667	0,306	0,817	0,583	0,969	0,340	0,841
TiII4Q	0,135	0,154	0,667	0,278	0,591	0,918	0,188	0,596	0,570
TiIII4Q	0,409	0,503	0,278	0,611	0,550	0,757	0,588	0,383	0,121
TiI5Q	0,135	0,147	0,500	0,167	1,000	0,750	1,000	0,043	0,449
TiII5Q	0,304	0,322	0,778	0,222	0,560	0,864	0,519	0,298	0,738
TiIII5Q	0,275	0,252	0,556	0,361	0,947	1,000	0,506	0,489	0,000
TiI6Q	0,164	0,371	0,333	0,139	0,774	0,779	0,738	0,000	0,598
TiII6Q	0,316	0,434	0,778	0,000	0,777	0,801	0,281	0,128	0,280
TiIII6Q	0,357	0,713	0,611	0,389	0,686	0,733	0,356	0,277	0,243
TiI7Q	0,292	0,224	0,389	0,500	0,548	0,724	0,206	0,745	0,589
TiII7Q	0,427	0,406	0,444	0,361	0,053	0,847	0,119	0,851	0,869
TiIII7Q	0,649	0,273	0,389	0,778	0,528	0,845	0,238	1,000	0,215
TiI8Q	0,363	0,266	0,111	0,333	0,409	0,874	0,663	0,021	0,907
TiII8Q	0,374	0,392	0,444	0,361	0,299	0,805	0,056	0,809	0,589
TiIII8Q	0,304	0,168	0,500	0,361	0,377	0,856	0,525	0,149	0,402
TiI9Q	0,544	0,657	0,000	0,222	0,234	0,821	0,356	0,362	1,000
TiII9Q	0,977	0,993	0,611	0,806	0,000	0,914	0,031	0,277	0,374
TiIII9Q	1,000	1,000	0,500	1,000	0,026	0,759	0,000	0,085	0,542

Tabela 87. Sekwencje odchyleń dla stali ulepszonej cieplnie 40HM + QT Sekwencje odchyleń

			Se	kwencje o	odchyleń		
Kod	CYLt	STRt	RONt	DE	Rz	Rt	Ra
TiI1A	0,000	0,054	0,268	0,016	0,552	0,688	0,762
TiII1A	0,018	0,000	0,439	0,000	0,670	0,480	0,699
TiIII1A	0,333	0,527	0,748	0,357	1,000	0,930	1,000
TiI2A	0,600	0,442	0,911	0,558	0,814	0,628	0,775
TiII2A	0,548	0,408	0,829	0,325	0,629	0,532	0,490
TiIII2A	0,270	0,116	0,951	0,352	0,865	0,720	0,778
TiI3A	0,636	0,561	0,707	0,553	0,439	0,110	0,181
TiII3A	0,461	0,388	0,821	0,497	0,332	0,300	0,258
TiIII3A	0,409	0,350	0,854	0,513	0,379	0,243	0,392
TiI4A	0,352	0,405	0,512	0,611	0,497	0,499	0,670
TiII4A	0,352	0,463	0,854	0,484	0,912	0,429	0,697
TiIII4A	0,594	0,575	0,748	0,426	0,619	0,792	0,686
TiI5A	0,858	0,922	1,000	0,849	0,549	0,374	0,560
TiII5A	0,742	0,476	0,789	0,720	0,726	0,354	0,376
TiIII5A	1,000	1,000	0,992	1,000	0,694	0,743	0,795
TiI6A	0,606	0,718	0,740	0,780	0,281	0,226	0,027
TiII6A	0,727	0,779	0,886	0,574	0,251	0,216	0,216
TiIII6A	0,694	0,643	1,000	0,854	0,221	0,000	0,149
TiI7A	0,288	0,296	0,423	0,566	0,356	0,741	0,567
TiII7A	0,482	0,357	0,423	0,516	0,514	0,528	0,627
TiIII7A	0,342	0,551	0,715	0,844	0,847	1,000	0,821
TiI8A	0,655	0,531	0,553	0,894	0,581	0,881	0,364
TiII8A	0,645	0,476	0,496	0,767	0,465	0,840	0,340
TiIII8A	0,633	0,765	0,545	0,929	0,623	0,810	0,477
TiI9A	0,606	0,721	0,577	0,619	0,245	0,356	0,000
TiII9A	0,767	0,837	0,000	0,757	0,000	0,162	0,103
TiIII9A	0,527	0,793	0,008	0,778	0,073	0,157	0,108

Tabela 88. Sekwencje odchyleń dla stopu aluminium PA6

				Sek	wencje o	odchyleń			
Kod	CYL_t	STR _t	RON_t	DE	Rz	Rt	Ra	h_0	b_{f}
TiI1M	0,612	0,715	0,378	0,436	0,257	0,202	0,333	0,449	0,794
TiII1M	0,671	0,760	0,489	0,567	0,357	0,246	0,469	0,990	1,000
TiIII1M	0,000	0,260	0,333	0,412	0,635	0,370	0,735	0,176	0,528
TiI2M	0,671	1,000	0,400	0,357	0,429	0,452	0,505	0,205	0,655
TiII2M	0,631	0,769	0,811	0,640	0,639	1,000	0,678	0,556	0,940
TiIII2M	0,631	0,170	1,000	0,790	0,847	0,839	0,835	0,054	0,425
TiI3M	0,790	0,798	0,189	0,740	0,312	0,384	0,520	0,210	0,563
TiII3M	1,000	0,413	0,200	0,857	0,532	0,666	0,713	0,468	0,393
TiIII3M	0,937	0,359	0,722	0,969	0,703	0,656	0,782	0,000	0,563
TiI4M	0,378	0,415	0,122	0,707	0,275	0,097	0,262	0,766	0,655
TiII4M	0,565	0,491	0,000	0,729	0,117	0,000	0,175	0,893	0,988
TiIII4M	0,388	0,150	0,167	0,969	0,613	0,568	0,592	0,444	0,563
TiI5M	0,905	0,720	0,356	0,550	0,515	0,233	0,531	0,493	0,774
TiII5M	0,644	0,780	0,211	0,540	0,404	0,284	0,429	0,444	0,893
TiIII5M	0,601	0,410	0,644	0,774	0,762	0,560	0,895	0,244	0,575
TiI6M	0,614	0,556	0,500	0,579	0,439	0,224	0,929	0,976	0,972
TiII6M	0,682	0,650	0,256	0,821	0,551	0,548	0,527	1,000	0,762
TiIII6M	0,786	0,444	0,444	1,000	0,601	0,706	0,527	0,556	0,603
TiI7M	0,587	0,101	0,167	0,579	0,308	0,371	0,246	0,429	0,619
TiII7M	0,669	0,280	0,000	0,664	0,000	0,069	0,000	0,727	0,417
TiIII7M	0,400	0,000	0,189	0,886	1,000	0,690	0,624	0,132	0,000
TiI8M	0,614	0,417	0,733	0,000	0,659	0,747	0,930	0,693	0,393
TiII8M	0,358	0,442	0,544	0,790	0,586	0,355	0,547	0,698	0,187
TiIII8M	0,456	0,325	0,589	0,724	0,879	0,791	0,725	0,224	0,234
TiI9M	0,196	0,175	0,289	0,214	0,364	0,366	0,873	0,546	0,341
TiII9M	0,416	0,469	0,289	0,605	0,443	0,374	0,627	0,527	0,194
TiIII9M	0,309	0,278	0,689	0,729	0,779	0,559	1,000	0,673	0,190

Tabela 89. Sekwencje odchyleń dla stopu mosiądzu MO58

Г
	Sekwencje odchyleń										
Kod	CYLt	STR _t	RON _t	DE	Rz	Rt	Ra	h_0	b_{f}		
TiI1I	0,422	0,670	0,971	0,358	0,415	0,541	0,605	0,436	0,027		
TiII1I	0,699	0,892	0,771	0,420	0,000	0,000	0,000	0,030	0,020		
TiII11	0,695	0,528	0,886	0,452	0,172	0,323	0,122	0,069	0,000		
TiI2I	0,985	0,790	0,571	0,265	0,262	0,513	0,616	1,000	0,101		
TiII2I	0,360	0,519	0,714	0,173	0,235	0,097	0,371	0,069	0,236		
TiIII2I	0,064	0,052	0,600	0,000	0,195	0,354	0,276	0,634	0,095		
TiI3I	0,452	0,664	1,000	0,238	0,088	0,256	0,361	0,406	0,108		
TiII3I	0,296	0,253	0,257	0,083	0,166	0,099	0,299	0,010	0,257		
TiIII3I	0,000	0,093	0,400	0,020	0,200	0,276	0,316	0,129	0,115		
TiI4I	0,149	0,003	0,800	0,183	0,756	0,725	0,651	0,000	0,142		
TiII4I	0,198	0,059	0,629	0,161	0,565	0,574	0,502	0,465	0,196		
TiIII4I	0,237	0,201	0,514	0,123	0,696	0,777	0,544	0,139	0,277		
TiI5I	0,169	0,077	0,429	0,189	0,544	0,804	0,655	0,198	0,351		
TiII5I	0,066	0,000	0,371	0,232	0,630	0,730	0,638	0,594	0,385		
TiIII5I	0,179	0,049	0,343	0,108	0,543	0,772	0,506	0,188	0,486		
TiI6I	0,245	0,123	0,543	0,250	0,404	0,594	0,505	0,416	0,439		
TiII6I	0,298	0,231	0,000	0,292	0,505	0,552	0,648	0,010	0,500		
TiIII6I	0,209	0,062	0,343	0,212	0,531	0,673	0,552	0,406	0,399		
TiI7I	0,842	0,410	0,371	0,861	0,770	0,958	0,891	0,545	0,304		
TiII7I	0,680	0,336	0,571	0,539	1,000	0,764	0,907	0,545	0,270		
TiIII7I	0,642	0,435	0,514	0,632	0,670	0,826	0,805	0,554	0,277		
TiI8I	0,776	0,972	0,171	1,000	0,597	0,705	0,717	0,733	0,372		
TiII8I	0,836	0,580	0,457	0,608	0,842	0,980	1,000	0,881	0,351		
TiIII8I	0,889	0,877	0,571	0,695	0,777	1,000	0,719	0,634	1,000		
TiI9I	1,000	0,731	0,629	0,821	0,382	0,523	0,405	0,980	0,514		
TiII9I	0,915	1,000	0,114	0,548	0,715	0,598	0,719	0,752	0,412		
TiIII9I	0,755	0,642	0,486	0,661	0,573	0,722	0,558	0,297	0,277		

Tabela 90. Sekwencje odchyleń dla Inconelu 718

Następnie aby obliczyć współczynniki oraz stopień szarej relacji dobrano współczynnik rozróżniający wynoszący 0,5 dla równania (85). Jeśli eksperyment uzyskuje najwyższą wartość szarej oceny relacji z sekwencją referencyjną, oznacza to, że sekwencja porównawcza jest najbardziej podobna do sekwencji referencyjnej i ten eksperyment byłby najlepszym wyborem. Tabele 91–95 przedstawiają obliczone współczynniki oraz ocenę szarości dla każdego eksperymentu. Najwyższa ocena relacyjna to 1.

$$y_{ij} = \frac{\Delta_{min} + \xi \cdot \Delta_{max}}{\Delta_{ij} + \xi \cdot \Delta_{max}}$$
(85)

Tabela 91. Szare wspołczynniki relacyjne i szara ocena relacyjna dla stali C4								.45			
Kod	CYLt	STRt	RONt	DE	Rz	Rt	Ra	h_0	b_{f}	Ocena	Nr
TiI1S	0,726	0,686	0,333	0,576	0,765	0,867	0,727	0,467	0,333	0,609	12
TiII1S	0,812	0,882	0,429	0,630	0,654	0,669	0,615	0,361	0,672	0,636	8
TiIII1S	0,728	0,962	0,484	0,773	0,677	0,940	0,519	0,371	0,482	0,660	4
TiI2S	0,918	0,765	0,529	0,723	0,506	0,595	0,506	0,632	0,631	0,645	6
TiII2S	1,000	0,904	0,517	0,680	0,523	0,758	0,476	0,544	1,000	0,711	3
TiIII2S	0,946	1,000	0,882	0,567	0,410	0,583	0,341	0,462	0,672	0,652	5
TiI3S	0,891	0,913	0,455	1,000	0,663	0,576	0,687	0,741	0,567	0,721	2
TiII3S	0,902	0,755	0,529	0,723	1,000	1,000	0,714	0,391	0,794	0,757	1
TiIII3S	0,675	0,762	0,652	0,557	0,694	0,640	0,519	0,589	0,711	0,644	7
TiI4S	0,918	0,895	0,634	0,567	0,358	0,587	0,661	0,544	0,510	0,630	9
TiII4S	0,918	0,856	0,584	0,596	0,372	0,350	0,424	0,632	0,367	0,567	20
TiIII4S	0,751	0,803	0,789	0,486	0,409	0,464	0,376	0,606	0,457	0,571	18
TiI5S	0,757	0,737	0,616	0,667	0,333	0,487	0,497	0,694	0,447	0,582	16
TiII5S	0,677	0,716	1,000	0,493	0,366	0,476	0,465	0,729	0,510	0,603	14
TiIII5S	0,743	0,749	0,918	0,531	0,399	0,473	0,400	0,558	0,479	0,583	15
TiI6S	0,597	0,605	0,570	0,850	0,511	0,492	0,678	1,000	0,367	0,630	10
TiII6S	0,841	0,673	0,634	0,607	0,529	0,585	0,508	0,811	0,471	0,629	11
TiIII6S	0,699	0,609	0,600	0,486	0,589	0,526	0,556	0,551	0,374	0,554	21
TiI7S	0,726	0,683	0,366	0,333	0,523	0,732	0,533	0,333	0,898	0,570	19
TiII7S	0,660	0,644	0,517	0,442	0,382	0,333	0,578	0,494	0,395	0,494	24
TiIII7S	0,577	0,585	0,584	0,500	0,352	0,499	0,333	0,430	0,468	0,481	26
TiI8S	0,636	0,658	0,517	0,486	0,349	0,709	0,627	0,662	0,547	0,577	17
TiII8S	0,627	0,607	0,506	0,442	0,360	0,498	0,436	0,462	0,367	0,478	27
TiIII8S	0,544	0,470	0,634	0,374	0,402	0,563	0,420	0,538	0,409	0,484	25
TiI9S	0,445	0,494	0,455	0,850	0,561	0,867	1,000	0,336	0,471	0,609	13
TiII9S	0,438	0,457	0,437	0,362	0,788	0,954	0,667	0,384	0,447	0,548	22
TiIII9S	0,333	0,333	0,405	0,340	0,700	0,984	0,608	0,443	0,386	0,504	23

Tabela 91. Szare współczynniki relacyjne i szara ocena relacyjna dla stali C45

Z tabeli 91 wynika, że dla stali C45 stosując eksperyment 8 (TiII3S; n = 3183 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny) uzyskamy wszystkie parametry wyjściowe najkorzystniejsze (o najmniejszych wartościach).

Kod	CYLt	STRt	RONt	DE	Rz	Rt	Ra	h ₀	b_{f}	Ocena	Nr
TiI1Q	0,795	0,704	0,500	0,514	0,460	1,000	0,374	0,495	0,349	0,577	8
TiII1Q	0,622	0,619	0,563	0,419	0,792	0,443	0,500	0,353	0,401	0,523	22
TiIII1Q	0,622	0,619	0,692	0,450	0,643	0,426	0,516	0,416	0,502	0,543	17
TiI2Q	0,553	0,463	0,375	0,720	0,414	0,422	0,415	0,627	0,566	0,506	26
TiII2Q	0,650	0,584	0,409	0,643	0,747	0,380	0,667	0,540	0,781	0,600	1
TiIII2Q	0,514	0,509	0,333	0,600	0,601	0,357	0,440	0,439	0,699	0,499	27
TiI3Q	0,493	0,630	0,474	0,643	0,734	0,441	0,471	0,516	0,392	0,533	20
TiII3Q	0,600	0,509	0,375	0,818	0,662	0,424	0,552	0,388	0,728	0,562	12
TiIII3Q	0,728	0,653	0,360	0,486	0,522	0,367	0,548	0,402	0,641	0,523	23
TiI4Q	1,000	1,000	0,429	0,621	0,380	0,462	0,340	0,595	0,373	0,578	7
TiII4Q	0,788	0,765	0,429	0,643	0,458	0,353	0,727	0,456	0,467	0,565	11
TiIII4Q	0,550	0,498	0,643	0,450	0,476	0,398	0,460	0,566	0,805	0,538	18
TiI5Q	0,788	0,773	0,500	0,750	0,333	0,400	0,333	0,922	0,527	0,592	4
TiII5Q	0,622	0,609	0,391	0,692	0,472	0,367	0,491	0,627	0,404	0,519	24
TiIII5Q	0,645	0,665	0,474	0,581	0,345	0,333	0,497	0,505	1,000	0,561	13
TiI6Q	0,753	0,574	0,600	0,783	0,392	0,391	0,404	1,000	0,455	0,595	3
TiII6Q	0,613	0,536	0,391	1,000	0,392	0,384	0,640	0,797	0,641	0,599	2
TiIII6Q	0,584	0,412	0,450	0,563	0,422	0,406	0,584	0,644	0,673	0,526	21
TiI7Q	0,631	0,691	0,563	0,500	0,477	0,409	0,708	0,402	0,459	0,538	19
TiII7Q	0,539	0,552	0,529	0,581	0,905	0,371	0,808	0,370	0,365	0,558	14
TiIII7Q	0,435	0,647	0,563	0,391	0,487	0,372	0,678	0,333	0,699	0,512	25
TiI8Q	0,580	0,653	0,818	0,600	0,550	0,364	0,430	0,959	0,355	0,590	5
TiII8Q	0,572	0,561	0,529	0,581	0,626	0,383	0,899	0,382	0,459	0,555	16
TiIII8Q	0,622	0,749	0,500	0,581	0,570	0,369	0,488	0,770	0,554	0,578	6
TiI9Q	0,479	0,432	1,000	0,692	0,681	0,379	0,584	0,580	0,333	0,573	10
TiII9Q	0,339	0,335	0,450	0,383	1,000	0,354	0,941	0,644	0,572	0,557	15
TiIII9Q	0,333	0,333	0,500	0,333	0,950	0,397	1,000	0,855	0,480	0,576	9

Tabela 92. Szare współczynniki relacyjne i szara ocena relacyjna dla stali ulepszonej cieplnie 40HM + QT

Z tabeli 92 wynika, że dla stali ulepszonej cieplnie 40HM + QT stosując eksperyment 5 (TiII2Q; n = 3979 obr/min, $f_n = 0.14$ mm/obr oraz drugi układ kinematyczny) uzyskamy wszystkie parametry wyjściowe najkorzystniejsze (o najmniejszych wartościach).

			u	ummun	11110				
Kod	CYLt	STR _t	RONt	DE	Rz	Rt	Ra	Ocena	Nr
TiI1A	1,000	0,902	0,651	0,969	0,475	0,421	0,396	0,688	2
TiII1A	0,965	1,000	0,532	1,000	0,427	0,510	0,417	0,693	1
TiIII1A	0,600	0,487	0,401	0,583	0,333	0,350	0,333	0,441	22
TiI2A	0,455	0,531	0,354	0,473	0,380	0,443	0,392	0,433	23
TiII2A	0,477	0,551	0,376	0,606	0,443	0,484	0,505	0,492	16
TiIII2A	0,650	0,812	0,345	0,587	0,366	0,410	0,391	0,509	13
TiI3A	0,440	0,471	0,414	0,475	0,533	0,820	0,734	0,555	8
TiII3A	0,521	0,563	0,378	0,501	0,601	0,625	0,660	0,550	9
TiIII3A	0,550	0,588	0,369	0,493	0,569	0,673	0,560	0,543	10
TiI4A	0,587	0,553	0,494	0,450	0,501	0,501	0,427	0,502	15
TiII4A	0,587	0,519	0,369	0,508	0,354	0,538	0,418	0,471	18
TiIII4A	0,457	0,465	0,401	0,540	0,447	0,387	0,421	0,445	21
TiI5A	0,368	0,352	0,333	0,371	0,477	0,572	0,472	0,421	25
TiII5A	0,402	0,512	0,388	0,410	0,408	0,586	0,571	0,468	19
TiIII5A	0,333	0,333	0,335	0,333	0,419	0,402	0,386	0,363	27
TiI6A	0,452	0,411	0,403	0,390	0,640	0,689	0,948	0,562	7
TiII6A	0,407	0,391	0,361	0,466	0,666	0,698	0,698	0,527	12
TiIII6A	0,419	0,438	0,333	0,369	0,693	1,000	0,771	0,575	6
TiI7A	0,635	0,628	0,542	0,469	0,584	0,403	0,469	0,533	11
TiII7A	0,509	0,583	0,542	0,492	0,493	0,486	0,444	0,507	14
TiIII7A	0,594	0,476	0,411	0,372	0,371	0,333	0,378	0,419	26
TiI8A	0,433	0,485	0,475	0,359	0,463	0,362	0,579	0,451	20
TiII8A	0,437	0,512	0,502	0,395	0,518	0,373	0,596	0,476	17
TiIII8A	0,441	0,395	0,479	0,350	0,445	0,382	0,512	0,429	24
TiI9A	0,452	0,409	0,464	0,447	0,672	0,584	1,000	0,575	5
TiII9A	0,395	0,374	1,000	0,398	1,000	0,755	0,829	0,679	3
TiIII9A	0,487	0,387	0,984	0,391	0,873	0,761	0,822	0,672	4

Tabela 93. Szare współczynniki relacyjne i szara ocena relacyjna dla stopu aluminium PA6

			^	mos	siądzu l	MO58			••	<u>^</u>	
Kod	CYLt	STRt	RONt	DE	Rz	Rt	Ra	h_0	b_{f}	Ocena	Nr
TiI1M	0,450	0,411	0,570	0,534	0,661	0,713	0,601	0,527	0,387	0,539	9
TiII1M	0,427	0,397	0,506	0,469	0,584	0,670	0,516	0,336	0,333	0,471	22
TiII11M	1,000	0,658	0,600	0,548	0,440	0,574	0,405	0,740	0,486	0,606	4
TiI2M	0,427	0,333	0,556	0,583	0,538	0,525	0,498	0,709	0,433	0,511	14
TiII2M	0,442	0,394	0,381	0,438	0,439	0,333	0,424	0,473	0,347	0,408	27
TiIII2M	0,442	0,746	0,333	0,387	0,371	0,373	0,375	0,903	0,541	0,497	17
TiI3M	0,388	0,385	0,726	0,403	0,616	0,566	0,490	0,704	0,470	0,528	11
TiII3M	0,333	0,548	0,714	0,368	0,484	0,429	0,412	0,516	0,560	0,485	21
TiIII3M	0,348	0,582	0,409	0,340	0,416	0,433	0,390	1,000	0,470	0,488	19
TiI4M	0,569	0,547	0,804	0,414	0,645	0,837	0,656	0,395	0,433	0,589	7
TiII4M	0,470	0,505	1,000	0,407	0,811	1,000	0,741	0,359	0,336	0,625	3
TiIII4M	0,563	0,769	0,750	0,340	0,449	0,468	0,458	0,530	0,470	0,533	10
TiI5M	0,356	0,410	0,584	0,476	0,493	0,682	0,485	0,504	0,393	0,487	20
TiII5M	0,437	0,391	0,703	0,481	0,553	0,638	0,538	0,530	0,359	0,514	13
TiIII5M	0,454	0,549	0,437	0,393	0,396	0,472	0,358	0,672	0,465	0,466	23
TiI6M	0,449	0,473	0,500	0,464	0,533	0,691	0,350	0,339	0,340	0,460	24
TiII6M	0,423	0,435	0,662	0,378	0,476	0,477	0,487	0,333	0,396	0,452	25
TiIII6M	0,389	0,530	0,529	0,333	0,454	0,415	0,487	0,473	0,453	0,452	26
TiI7M	0,460	0,832	0,750	0,464	0,619	0,574	0,670	0,538	0,447	0,595	6
TiII7M	0,428	0,641	1,000	0,429	1,000	0,879	1,000	0,408	0,545	0,703	1
TiIII7M	0,555	1,000	0,726	0,361	0,333	0,420	0,445	0,792	1,000	0,626	2
TiI8M	0,449	0,545	0,405	1,000	0,431	0,401	0,350	0,419	0,560	0,507	15
TiII8M	0,583	0,531	0,479	0,387	0,461	0,585	0,477	0,418	0,728	0,517	12
TiIII8M	0,523	0,606	0,459	0,409	0,363	0,387	0,408	0,690	0,681	0,503	16
TiI9M	0,718	0,741	0,634	0,700	0,579	0,577	0,364	0,478	0,594	0,598	5
TiII9M	0,546	0,516	0,634	0,453	0,530	0,572	0,444	0,487	0,720	0,545	8
TiIII9M	0,618	0,643	0,421	0,407	0,391	0,472	0,333	0,426	0,724	0,493	18

Tabela 94. Szare współczynniki relacyjne i szara ocena relacyjna dla stopu

Z tabeli 93 wynika, że dla stopu aluminium PA6 stosując eksperyment 2 (TiII1A; n = 4775 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny) uzyskamy wszystkie parametry wyjściowe najkorzystniejsze (o najmniejszych wartościach).

Z tabeli 94 wynika, że dla stopu mosiądzu MO58 stosując eksperyment 20 (TiII7M; n = 4775 obr/min, $f_n = 0.1$ mm/obr oraz drugi układ kinematyczny) uzyskamy wszystkie parametry wyjściowe najkorzystniejsze (o najmniejszych wartościach).

Kod	CYLt	STRt	RONt	DE	Rz	Rt	Ra	h_0	b_{f}	Ocena	Nr
TiI1I	0,542	0,427	0,340	0,583	0,546	0,480	0,453	0,534	0,949	0,539	17
TiII1I	0,417	0,359	0,393	0,544	1,000	1,000	1,000	0,944	0,961	0,735	3
TiIII1I	0,418	0,486	0,361	0,525	0,744	0,608	0,804	0,878	1,000	0,647	8
TiI2I	0,337	0,388	0,467	0,653	0,656	0,494	0,448	0,333	0,831	0,512	18
TiII2I	0,582	0,491	0,412	0,743	0,680	0,838	0,574	0,878	0,679	0,653	6
TiIII2I	0,886	0,905	0,455	1,000	0,719	0,585	0,644	0,441	0,841	0,720	4
TiI3I	0,525	0,430	0,333	0,678	0,850	0,662	0,581	0,552	0,822	0,604	13
TiII3I	0,628	0,664	0,660	0,857	0,750	0,835	0,626	0,981	0,661	0,740	2
TiIII3I	1,000	0,844	0,556	0,962	0,714	0,645	0,613	0,795	0,813	0,771	1
TiI4I	0,771	0,994	0,385	0,732	0,398	0,408	0,434	1,000	0,779	0,656	5
TiII4I	0,717	0,895	0,443	0,757	0,469	0,466	0,499	0,518	0,718	0,609	10
TiIII4I	0,678	0,714	0,493	0,803	0,418	0,391	0,479	0,783	0,643	0,600	14
TiI5I	0,747	0,866	0,538	0,725	0,479	0,383	0,433	0,716	0,587	0,608	11
TiII5I	0,884	1,000	0,574	0,683	0,443	0,407	0,439	0,457	0,565	0,606	12
TiIII5I	0,736	0,910	0,593	0,823	0,479	0,393	0,497	0,727	0,507	0,630	9
TiI6I	0,671	0,802	0,479	0,667	0,553	0,457	0,498	0,546	0,532	0,578	16
TiII6I	0,627	0,684	1,000	0,631	0,497	0,475	0,435	0,981	0,500	0,648	7
TiIII6I	0,705	0,890	0,593	0,702	0,485	0,426	0,475	0,552	0,556	0,598	15
TiI7I	0,373	0,549	0,574	0,367	0,394	0,343	0,359	0,479	0,622	0,451	24
TiII7I	0,424	0,598	0,467	0,481	0,333	0,396	0,355	0,479	0,649	0,465	22
TiIII7I	0,438	0,535	0,493	0,442	0,427	0,377	0,383	0,474	0,643	0,468	20
TiI8I	0,392	0,340	0,745	0,333	0,456	0,415	0,411	0,406	0,574	0,452	23
TiII8I	0,374	0,463	0,522	0,451	0,373	0,338	0,333	0,362	0,587	0,423	26
TiIII8I	0,360	0,363	0,467	0,418	0,392	0,333	0,410	0,441	0,333	0,391	27
TiI9I	0,333	0,406	0,443	0,378	0,567	0,489	0,552	0,338	0,493	0,444	25
TiII9I	0,353	0,333	0,814	0,477	0,411	0,455	0,410	0,399	0,548	0,467	21
TiIII9I	0,398	0,438	0,507	0,431	0,466	0,409	0,472	0,627	0,643	0,488	19

Tabela 95. Szare współczynniki relacyjne i szara ocena relacyjna dla Inconelu 718

Z tabeli 95 wynika, że dla Inconelu 718 stosując eksperyment 9 (TiIII3I; n = 955 obr/min, $f_n = 0.075$ mm/obr oraz trzeci układ kinematyczny) uzyskamy wszystkie parametry wyjściowe najkorzystniejsze (o najmniejszych wartościach).

Średnie ocen relacyjnych w skali szarości dla każdego poziomu parametrów wejściowych (sterowalnych) obliczono oraz przedstawiono na rys. 137–141.

Rys. 137. Wykres odpowiedzi dla średniej oceny w skali szarości dla stali C45 Z rys. 137 wynika, że najbardziej optymalnymi parametrami wejściowymi dla stali C45 są: n = 3183 obr/min, $f_n = 0,14$ mm/obr oraz pierwszy układ kinematyczny.

Rys. 138. Wykres odpowiedzi dla średniej oceny w skali szarości dla stali ulepszonej cieplnie 40HM + QT

Z rys. 138 wynika, że najbardziej optymalnymi parametrami wejściowymi dla stali ulepszonej cieplnie 40HM + QT są: n = 3183 obr/min, $f_n = 0,12$ mm/obr oraz pierwszy układ kinematyczny.

Rys. 139. Wykres odpowiedzi dla średniej oceny w skali szarości dla stopu aluminium PA6 Z rys. 139 wynika, że najbardziej optymalnymi parametrami wejściowymi dla stopu aluminium PA6 są: n = 3183 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny.

Rys. 140. Wykres odpowiedzi dla średniej oceny w skali szarości dla stopu mosiądzu MO58

Z rys. 140 wynika, że najbardziej optymalnymi parametrami wejściowymi dla stopu mosiądzu MO58 są: n = 4775 obr/min, $f_n = 0,1$ mm/obr oraz pierwszy układ kinematyczny.

Rys. 141. Wykres odpowiedzi dla średniej oceny w skali szarości dla Inconelu 718 Z rys. 141 wynika, że najbardziej optymalnymi parametrami wejściowymi dla Inconelu 718 są: n = 955 obr/min, $f_n = 0.075$ mm/obr oraz drugi układ kinematyczny.

Wnioski:

- 1. Stosując optymalizację wielokryterialną GRA można określić najkorzystniejsze parametry wejściowego dla których to uzyskano najmniejsze bądź największe wartości parametrów wyjściowych.
- 2. Dla stali C45, najmniejsze wartości parametrów wyjściowych, uzyskano stosując eksperyment 8 (n = 3183 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny).
- 3. Dla stali ulepszonej cieplnie 40HM + QT, najmniejsze wartości parametrów wyjściowych, uzyskano stosując eksperyment 5 (n = 3979 obr/min, $f_n = 0.14$ mm/obr oraz drugi układ kinematyczny).
- 4. Dla stopu aluminium PA6, najmniejsze wartości parametrów wyjściowych, uzyskano stosując eksperyment 2 (n = 4775 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny).
- 5. Dla stopu mosiądzu MO58, najmniejsze wartości parametrów wyjściowych, uzyskano stosując eksperyment 20 (n = 4775 obr/min, $f_n = 0,1$ mm/obr oraz drugi układ kinematyczny).
- 6. Dla Inconelu 718, najmniejsze wartości parametrów wyjściowych, uzyskano stosując eksperyment 9 (n = 955 obr/min, $f_n = 0.075$ mm/obr oraz trzeci układ kinematyczny).

6. WNIOSKI I UWAGI KOŃCOWE

Analiza bieżącego stanu wiedzy z zakresu podjętego tematu oraz badania własne głównie eksperymentalne, pozwalają na sformułowanie wniosków o charakterze poznawczym i utylitarnym, a także wytycznych dotyczących dalszych prac.

6.1. Wnioski poznawcze i utylitarne

- 1. Optymalne zestawy parametrów wejściowych z analizy dokładności wymiarowo kształtowej otworów to: TiIII2S, TiII3S, TiI4S, TiII4S, TiII5S, TiII6S, TiII6S, TiI1Q, TiI1A, TiI9M, TiII2I. TiII3I, TiII13I, TiII15I oraz TiII6I.
- 2. Analiza statystyczna ANOVA umożliwia określenie wpływu każdego badanego parametru wejściowego (*f_n*, *n* oraz *KIN*) na parametry wyjściowe (CYL_t, STR_t, RON_t, DE, Ra, Rt, Rz, b_f oraz h₀).
- 3. Model hybrydowy umożliwia najdokładniejsze dopasowanie wartości eksperymentalnych z przewidywanymi. Umożliwił on uzyskanie najwyższej korelacji wyników.
- 4. Wartości eksperymentalne z przewidywanymi dla większości wyników są bardzo zbliżone do siebie.
- 5. Wysokie wartości współczynników determinacji wskazują na odpowiednie dopasowanie przewidywanych wartości badanych z eksperymentalnymi wynikami.
- 6. Opracowane równania można zastosować do przewidywania błędów kształtu, położenia, chropowatości, wysokości oraz szerokości zadzioru otworu w badanych materiałach.
- Opracowane na podstawie przeprowadzonych badań eksperymentalnych modele matematyczne są istotne ponieważ poziomy istotności p są mniejsze niż 0,05.
- 8. Układ kinematyczny w ocenie dokładności wymiarowo kształtowej otworów miał największe znaczenie dla stali C45 w błędzie średnicy, stali ulepszonej cieplnie 40HM+QT w odchyłce okrągłości, stopie mosiądzu MO58 w odchyłce prostoliniowości oraz w błędzie średnicy, w Inconelu 718 w odchyłce walcowości.
- 9. Układ kinematyczny należy dobrać z zależności od obrabianego materiału. W ocenie dokładności wymiarowo kształtowej dla stali C45 nie ma jednoznacznego wskazania najkorzystniejszego układu kinematycznego. Stosując pierwszy układ kinematyczny, w stali ulepszonej cieplnie 40HM+QT, uzyskano najmniejsze wartości dla parametrów wyjściowych. W stopie aluminium PA6 należy stosować drugi układ kinematyczny (3 z 4 parametrów STR_t, RON_t, DE osiągną najmniejsze wartości). Dla stopu mosiądzu oraz Inconelu 718 wiercenie według układu kinematycznego trzeciego spowodowało uzyskanie najmniejszych wartości parametrów wyjściowych co jest optymalne ze względu na jakość wykonanego otworu.

- 10. Badania symulacyjne pozwoliły zobrazować odpowiednie zakresy parametrów technologicznych dla których to uzyskano najkorzystniejsze parametry wyjściowe w każdym badanym układzie kinematycznym.
- 11. Szeroki zakres badań umożliwił na ustalenie odpowiedniej kombinacji parametrów wejściowych (f_n , n oraz KIN) na parametry wyjściowe (CYL_t, STR_t, RON_t, DE, Ra, Rt, Rz, b_f oraz h₀).
- 12. Analiza chropowatości powierzchni pozwoliła na wybór następujących najkorzystniejszych zestawów parametrów wejściowych: TiI1S, TiII9S, TiII9Q, TiI6A, TiII6A, TiII6A, TiII9A, TiII9A, TiI4M, TiII4M, TiII7M, TiII111 oraz TiII3I.
- 13. Wpływ układu kinematycznego na chropowatość powierzchni miał kluczowe znaczenie dla stali C45 opisaną parametrem Ra, dla stali ulepszonej cieplnie 40HM+QT opisaną parametrem Rt, dla stopu aluminium PA6 opisaną parametrem Ra, dla stopu mosiądzu MO58 reprezentowaną parametrami Rz, Rt oraz Ra.
- 14. Najkorzystniejszym układem kinematycznym zastosowanym do obróbki otworów dla których określono chropowatość powierzchni opisaną parametrami Rz, Rt, Ra dla stali C45, stopu mosiądzu MO58 oraz Inconelu 718 był pierwszy układ kinematyczny. Natomiast dla stali ulepszonej cieplnie 40HM+QT oraz stopu aluminium PA6 był to układ kinematyczny drugi.
- 15. Analiza zadziorów na wyjściu otworu pozwoliła ustalić następujące najkorzystniejsze zestawy parametrów wejściowych: TiI2S, TiII6Q, TiII16Q, TiII17M, TiII18M, TiII11, TiII11, TiII2I, TiII3I, TiII13I, TiII13I, TiII19I.
- 16. Układ kinematyczny w wysokości oraz szerokości zadziorów na wyjściu otworu miał bardzo duży wpływ dla stali C45 opisaną parametrem b_f, dla stali ulepszonej cieplnie 40HM+QT opisaną parametrem b_f, dla stopu mosiądzu MO58 opisaną parametrami h₀ oraz b_f.
- 17. Najkorzystniejszym układem kinematycznym względem dwóch parametrów zadziorów dla stopu mosiądzu MO58 był układ kinematyczny III.
- 18. Analizę Fouriera można stosować do przejrzystej oceny przypadków odchyłek okrągłości w każdym badanym materiale.
- 19. Odchyłkę walcowości (baryłkowość otworu), w stopie aluminium PA6, uzyskano taką samą niezależnie od wybranego układu kinematycznego.
- 20. Baryłkowość otworu dominowała w stopie mosiądzu MO58 niezależnie od wybranego układu kinematycznego.
- 21. W stali ulepszonej cieplnie 40HM+QT niezależnie od wybranego układu kinematycznego dominował zarys podwójnego zniekształcenia linii środka.
- 22. Po wykonaniu otworów w stali C45 oraz stali ulepszonej cieplnie 40HM+QT w ocenie odchyłki okrągłości wszędzie dominowała trójgraniastość.
- 23. W stopie aluminium PA6 oraz w stopie mosiądzu MO58 na końcu otworu stwierdzono sześciograniastość w drugim oraz trzecim układzie kinematycznym.

- Na wyjściu otworów wykonanych w stopie mosiądzu MO58 oraz Inconelu 718 dominowały owalność wraz z trójgraniastością niezależnie od wybranego układu kinematycznego.
- 25. Z optymalizacji wielokryterialnej GRA określono najkorzystniejsze parametry wejściowe procesu wiercenia dla których to uzyskano najmniejsze wartości wyjściowe. Dla stali C45: n = 3183 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny. Dla stali ulepszonej cieplnie 40HM + QT: n = 3979 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny. Dla stopu aluminium PA6: n = 4775 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny. Dla stopu aluminium PA6: n = 4775 obr/min, $f_n = 0,14$ mm/obr oraz drugi układ kinematyczny. Dla stopu kład kinematyczny. Dla stopu mosiądzu MO58: n = 4775 obr/min, $f_n = 0,1$ mm/obr oraz drugi układ kinematyczny. Dla stopu mosiądzu MO58: n = 4775 obr/min, $f_n = 0,1$ mm/obr oraz drugi układ kinematyczny. Dla kinematyczny. Dla Inconelu 718: n = 955 obr/min, $f_n = 0,075$ mm/obr oraz trzeci układ kinematyczny.

6.2. Kierunki dalszych badań

Wykonane prace w niniejszej rozprawie objęły tylko pewien zakres dotyczący badań wpływu układu kinematycznego procesu wiercenia na jakość otworu. W związku z tym przedstawiono poniżej spis zagadnień na które powinno się zwrócić uwagę w przyszłych badaniach:

- 1. Przeprowadzenie badań jakości wykonanych otworów w różnych operacjach np. powiercania, pogłębiania i rozwiercania. Przeprowadzenie podobnych badań na innych obrabiarkach np. centrach wytaczarskich i frezarskich.
- Przeprowadzenie badań dokładności wymiarowo kształtowej wykonanych otworów wg IV kinematyki: przedmiot obrabiany wykonuje ruch obrotowy, natomiast narzędzie wykonuje ruch obrotowy w tym samym kierunku do ruchu przedmiotu oraz ruch posuwowy prostoliniowy.
- 3. Określenie zużycia wiertła w każdym układzie kinematycznym.
- 4. Przeprowadzenie pomiaru sił i momentów w każdym układzie kinematycznym.
- 5. Opracowanie stanowiska pozwalającego sprawdzać wpływ sposobu i dokładności zamocowania wiertła na jakość wierconego otworu.
- 6. Opracowanie nowych innowacyjnych konstrukcji wiertła, które pozwolą na zwiększenie produktywności procesu wiercenia.
- 7. Wpływ rodzaju chłodzenia na jakość otworu w każdym układzie kinematycznym.
- Opracowanie rozwiązań konstrukcyjno-technologicznych zwiększających dokładności wymiarowo kształtowe wykonanych otworów. Poprawi to jakość technologiczną tych otworów.

LITERATURA

- 1. Grzesik W., *Podstawy skrawania materiałów metalowych*, Warszawa: WNT, **1998**.
- 2. Zębala W., Modelowanie procesu skrawania, Kraków: WPK, 2011.
- 3. Streubel A., Obróbka długich otworów, Wrocław: WPW, 1993.
- 4. Levchenko A. I., Taranenko V. A.: *Matematiceskaya model processa glubokogo sverleniya*, Mechanics '98: Proceedings of the International Scientific Conference. Rzeszów **1998**, p. 75-82.
- Levchenko A., Taranenko W., *Identification and automation of deep-hole drilling*, Proc.2nd Int. Conf. "Measuring and machining of sculpured surfaces". Kraków 2000. p. 149-155.
- 6. Li S. J., Zhang P. K., *Optimization of the small and deep hole drilling parameters*, Progress of Machining Technology: With Some Topics in Advanced Manufacturing Technology **2000**, p. 673-677.
- 7. Troickiy N. D., *Glubokiye sverleniye*, Machinostroyeniye **1971**. 176 p.
- 8. Ulitin G. M., *Thelongitudinal vibrations of an elastic rod simulating a drilling rig*, International Applied Mechanics **2000**, vol. 36, nr 10, p. 1380-1384.
- 9. Zhilis V. I., Vasenis G. A., *Vliyaniye dliny i sposoba izgotovleniya sverl na ih stoykost' I tochnost' otverstiy*, Stanki I instrument **1995**, nr 1, p. 11-14.
- Gavrish A. O., Nikitenko M. F., *Opredeleniye ustoycivosti vibrosver-leniya*, Technologiya avtomatizaciya mashinostroyeniya. – Kiyev Tehnika **1984**. Vup. 33. p. 19-21.
- 11. Zubrzycki J., Zwiększenie dokładności wiercenia wibracyjnego głębokich otworów, Lublin WLTN, **2014**.
- 12. Storch B., Podstawy obróbki skrawaniem, Koszalin: WPK, 2001.
- 13. Kaczmarek J., Podstawy obróbki wiórowej, ściernej i erozyjnej, WNT, Warszawa, **1970.**
- 14. Hulboj S., Obróbka ubytkowa, Częstochowa: WPC, 1997.
- 15. Kudinov V. A.: Dinamika stankov, Mashinostroyeniye 1985, p. 224.
- 16. Skrodziewicz J., Marchelek K., Tomokov J., *Doświadczalne badania i estymacja empirycznych charakterystyk dynamicznych procesu skrawania*, Prace Naukowe ITBM Politechniki Wrocławskiej **1985**, 30, s. 298.
- Zhang P., Mei Ch., Guo X., Vibration Drilling the OCr18Ni9Ti Stainless Steel Micro-hole, Advanced Materials and Process Technology, PTS 1 – 3 Book Sereis, Applied Mechanics and Materials 2012, vol. 217-219, p. 1592-1595, Part: 1-3.
- Aamir M., Giasin K., Tolouei-Rad M., Vafadar A., A review: drilling performance and hole quality of aluminium alloys for aerospace applications, Journal of materials research and technology 2020, p. 12484-12500.
- Feld M., Podstawy projektowania procesów technologicznych typowych części maszyn, Warszawa: WNT, 2003.
- 20. Aized T., Amjad M., Quality improvement of deep-hole drilling process of AISI

D2, Int J Adv Manuf Technol 2013, p. 2493-2503.

- 21. Szwajka K., Zielińska-Szwajka J., *Wpływ wybranych parametrów skrawania* na dokładność obróbki w procesie wiercenia stopu Ti6Al4V, Zeszyty Naukowe Politechniki Rzeszowskiej 299 **2019**, s. 79-92.
- 22. Vipin, Kant S., Jawalkar CS., *Parametric Modeling in Drilling of Die Steels* using Taguchi Method based Response Surface Analysis, Materials Today: Proceedings 5 2018, p. 4531-4540.
- Prasanna J., Karunamoorthy L., Venkat Raman M., Prashanth S., Raj Chordia D., Optimization of process parameters of small hole dry drilling in Ti-6Al-4V using Taguchi and grey relational analysis, Measurement 2014, p. 346-354.
- 24. Kurt M., Bagci E., Kaynak Y., Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes, Int J Adv Manuf Technol **2009**, p. 458-469.
- 25. Dheeraj N., Sanjay S., Kiran Bhargav K., Jagadesh T., *Investigations into solid lubricant filled textured tools on hole geometry and surface integrity during drilling of aluminium alloy*, Materials Today: Proceedings **2020**, p. 991-997.
- Singh K. P., Kumar K., Saini P., Optimization of surface roughness and hole diameter accuracy in drilling of EN-31 alloy steel – A TGRA based analysis, Materials Today: Proceedings 2020, p. 2961-2971.
- Angelone R., Caggiano A., Improta I., Nele L., Teti R., Characterization of hole quality and temperature in drilling of Al/CFRP stacks under different process condition, 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 2018 Italy, p. 319-324.
- 28. Yoon Par S., Jong Choi W., Hoon Choi C., Soap Choi H., *Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate*, Composite Structures **2018**, p. 684-698.
- 29. Beuscart T., Arrazola P-J., Riviere-Lorphevre E., Flores P., Ducobu F., *Hole quality analysis of AISI 304-GFRP stacks using robotic drilling*, Procedia CIRP **2022**, p. 436-441.
- Cicek A., Ucak N., *The effects of cutting conditions on cutting remperature and hole quality in drilling of Inconel 718 using solid carbide drills*, Journal of Manufacturing Processes 2018, p. 662-673.
- 31. Giasin K., Hodzic A., Phadnis V., Ayvar-Soberanis S., Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study, Int J Adv Manuf Technol **2016**, p. 2041-2061.
- 32. Giasin K., Ayvar-Soberanis S., An Investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA, Composite Structures **2017**, p. 745-760.
- 33. Nouari M., List G., Girot F., Gehin D., Effect of machining parameters and coating on wear mechanisms in dry drilling of aluminium alloys, International Journal of Machine Tools & Manufacture **2005**, p. 1436-1442.
- 34. Kurt M., Kaynak Y., Bagci E., *Evaluation of drilled hole quality in Al 2024 alloy*, Int J Adv Manuf Technol **2008**, p. 1051-1060.

- 35. Dedeakayogullari H., Kacal A., Keser K., *Modeling and prediction of surface roughness at the drilling of SLM-Ti6Al4V parts manufactured with pre-hole with optimized ANN and ANFIS*, Measurement **2022**, p. 112029.
- Dedeakayogullari H., Kacal A., *Experimental investigation of hole quality in drilling of additive manufacturing Ti6Al4V parts produced by hole features*, Journal of Manufacturing Processes 2022, p. 745-758.
- 37. Zeng K., Wu X., Jiang F., Zhang J., Kong J., Shen J., Wu H., *Experimental* research on micro hole drilling of polycrystalline Nd:YAG, Ceramics International, **2022**, p. 9658-9666.
- Yagishita H., Fujio M., Effect of Coolant upon Hole Making Accuracy of Ti6Al4V by Drilling - Consideration of Hole Diameter in the Depth Direction, Manufacturing Letters, 2022, p. 333-341.
- Bertolini R., Savio E., Ghiotti A., Bruschi S., *The Effect of Cryogenic Cooling* and Drill Bit on the Hole Quality when Drilling Magnesium-based Fiber Metal Laminates, Procedia Manufacturing 53, 2021, p. 118-127.
- 40. Humienny Z., Osanna P.H., Tamre M., Weckenmann A., Blunt L., Jakubiec W., *Specyfikacje geometrii wyrobów*, Warszawa WNT **2004**.
- 41. Cakur M. C., Modern metal cutting methods, Turkey Bursa 2015.
- 42. Adamczak S., Pomiary geometryczne powierzchni zarysy kształtu falistość i chropowatość, Warszawa WNT, 2008.
- 43. Humienny Z., Osanna P.H., Tamre M., Weckenmann A., Blunt L., Jakubiec W., *Specyfikacje geometrii wyrobów*, Warszawa WNT **2004**.
- 44. Denkena B., Bergmann B., Kaiser S., Mucke M., Bolle D., *Process-parallel center deviation measurement of a BTA deep-hole drilling tool*, 4th International Conference on System-Integrated Intelligence **2018**, p. 229-234.
- 45. Cicek A., Kivak T., Ekici E., *Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically HSS drills*, I Intell Manuf **2015**, p. 295-305.
- 46. Balaji M., Venkata Rao K., Mohan Rao N., Murthy B.S.N., *Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration*, Measurement **2018** p. 332-339
- 47. Umesh Gowda B.M., Ravindra H.V., Naveen Prakash G.V., Ninshanth P., Urgrasen G., *Optimization of process parameters in drilling of epoxy Si*₃N₄ *composite material*, Materials Today: Proceedings 2 **2015**, p. 2852-2861.
- Prakash S., LillyMercy J., Salugu M.K., Vineeth K.S.M., Optimization of drilling characteristics using Grey Relational Analysis (GRA) in Medium Density Fiber Board (MDF), Materials Today: Proceedings 2 2015, p. 1541-1551.
- 49. Sandeep Reddy A. V., Ajay kumar S., Jagadesh T., *The Influence of graphite, MOS*₂ and Blasocut lubricant on hole and chip geometry during peck drilling of aerospace alloy, Materials Today: Proceedings 24 **2020**, p. 690-697.
- 50. Zhang X., Leong Tnay G., Liu K., Senthil Kumar A., Effect of apex offset inconsistency on hole straightness deviation in deep hole gun drilling of Inconel

718, International Journal of Machine Tools and Manufacture 2018, p. 123-132.

- Abdelhafeez A. M., Soo S. L., Aspinwall D. K., Dowson A., Arnold D., Burr formation and hole quality when drilling titanium and aluminium alloys, CIRPe 2015, p. 230-235.
- 52. Khanna N., Agrawal C., Gupta M. K., Song Q., *Tool wear and hole quality* evaluation in cryogenic Drilling of Inconel 718 superalloy, Tribology International **2020**, p.106084.
- Sa. Ahmed, A.; Lew, M.T.; Diwakar, P.; Kumar, A.S.; Rahman, M. A novel approach in high performance deep hole drilling of Inconel 718. Precis. Eng. 2019, p. 432-437
- 54. Oezkaya, E.; Beer, N.; Biermann, D. *Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718*. Int. J. Mach. Tools Manuf. **2016**, p. 52-65.
- 55. Neo, D. W. K.; Liu, K.; Kumar, A.S. *High throughput deep-hole drilling of Inconel 718 using PCBN gun drill.* J. Manuf. Process. **2020**, p. 302-311
- 56. Müller, D.; Lange, A.; Kirsch, B.; Aurich, J.C. Tool lifetime when drilling Inconel 718 in dependence of the cooling channel design –Influence of the clearance angle, the channel diameter, number, and shape. Procedia CIRP, 2021, p. 278-281
- 57. Al-Tameemi, H.A.; Al-Dulaimi, T.; Awe, M.O.; Sharma, S.; Pimenov, D.Y.; Koklu, U.; Giasin, K. Evaluation of Cutting-Tool Coating on the Surface Roughness and Hole Dimensional Tolerances during Drilling of Al6061-T651 Alloy, Materials 2021, p. 1783.
- 58. Shah P., Khanna N., Singla, A. K., Bansal A., *Tool wear, hole quality, power* consumption and chip morphology analysis for drilling Ti-6Al-4V using LN₂ and LCO₂, Tribology International, **2021**, p. 107190.
- 59. Boughdiri I., Giasin K., Mabrouki T., Zitoune R., *Effect of cutting parameters* on thrust force, torque, hole quality and dust generation during drilling of *GLARE 2B laminates*, Composite Structures, **2021**, p. 113562.
- 60. Senthil Babu S., Dhanasekaran C., *Comparative analysis of thrust force, roughness and roundness error in drilling of aluminium composites using RSM, ANN and fuzzy logic*, Materials Today: Proceedings, **2022**, p. 908-917.
- 61. Kumar D., Singh K.K., Experimental analysis of Delamination, Thrust Force and Surface roughness on Drilling of Glass Fibre Reinforced Polymer Composites Material Using Different Drills, Materials Today: Proceedings 4 2017, p. 7618-7627.
- 62. Kilickap E., Huseyinoglu M., Yardimeden A., *Optimization of drilling parameters on surface roughness in driling of AISI 1045 using response surface methodology and genetic algorithm*, Int J Adv Manuf Technol **2011**, p. 79-88.
- 63. Ravindranath V.M., Shiva Shankar G.S., Basavarajappa S., Suresh R., *Optimization of Al/B₄C and Al/B₄C/Gr MMC Drilling Using Taguchi Approach*, Materials Today: Proceedings 4 **2017**, p. 11181-11187.
- 64. Aamir M., Tolouei-Rad M., Giasin K., Vafadar A., Machinability of Al2024,

Al6061, and Al5083 alloys using multi-hole simultaneous drilling approach, Jounral of Materials research and technology **2020**, p. 10991-11002.

- 65. Angelone R., Caggiano A., Improta I., Nele L., Teti R., *Roughness of composite materials: characterization of hole quality in drilling of Al/CFRP stacks*, 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '2019, p. 473-478.
- 66. Biermann D., Heilmann M., Kirschner M., Analysis of the Influence of Tool Geometry on Surface Integrity in Single-lip Deep Hole Drilling with Small Diameters, 1st CIRP Conference on Surface Integrity 2011, p. 16-21.
- 67. Wegert R., Guski V., Schmauder S., Mohring H.-C., *Effects on surface and peripheral zone during single lip deep hole drilling*, 5th CIRP CSI **2020**, p. 113-118.
- 68. Siddiquee A.N., Khan Z.A., Goel P., Kumar M., Agarwal G., Khan N.Z., *Optimization of Deep Drilling Process Parameters of AISI 321 Steel using Taguchi Method*, 3rd International Conference on Materials Processing and Characterisation **2014**, p. 1217-1225.
- 69. Sharman, A.R.C.; Amarasinghe, A.; Ridgway, K. *Tool life and surface integrity aspects when drilling and hole making in Inconel 718*. Journal of Materials Processing Technology. **2008**, p. 424-432.
- Karabulut, Y.; Kaynak, Y. Drilling process and resulting surface properties of Inconel 718 alloy fabricated by Selective Laser Melting Additive Manufacturing. Procedia CIRP. 2020, p. 355-359.
- 71. Sahoo, A. K.; Jeet, S.; Bagal, D. K.; Barua, A.; Pattanaik, A. K.; Behera, N. Parametric optimization of CNC-drilling of Inconel 718 with cryogenically treated drill-bit using Taguchi-Whale optimization algorithm. Mater. Today. 2022, p. 1591-1598.
- 72. Shah, P.; Bhat, P.; Khanna, N. *Life cycle assessment of drilling Inconel* 718 *using cryogenic cutting fluids while considering sustainability parameters.* Sustainable Energy Technologies and Assessments. **2021**, p. 100950
- Guba N., Schumski L., Paulsen T., Karpuschewski B., Vibration-assisted deep hole drilling of the aluminum material AlMgSi0.5, CIRP Journal of Manufacturing Science and Technology, 2022, p. 57-66.
- 74. Shanmugam, V.; Marimuthu, U.; Rajendran, S.; Veerasimman, A.; Basha, A.M.; Majid, M.S.B.A.; Esmaeely Neisiany, R.; Försth, M.; Sas, G.; Javad Razavi, S.M.; Das, O. Experimental Investigation of Thrust Force, Delamination and Surface Roughness in Drilling Hybrid Structural Composites. Materials 2021, p. 4468.
- Hassan MH, Abdullah J, Franz G. Multi-Objective Optimization in Single-Shot Drilling of CFRP/Al Stacks Using Customized Twist Drill. Materials 2022, p.1981.
- 76. Demirsöz R, Yaşar N, Korkmaz ME, Günay M, Giasin K, Pimenov DY, Aamir M, Unal H. Evaluation of the Mechanical Properties and Drilling of Glass Bead/Fiber-Reinforced Polyamide 66 (PA66)-Based Hybrid Polymer

Composites. Materials 2022, p.2765.

- 77. Ni, J.; Zeng, X.; Al-Furjan, M.S.H.; Zhao, H.; Guan, L.; Cui, Z.; Han, L. *Effect* of Drilling Parameters on Machining Performance in Drilling Polytetrafluoroethylene. Materials **2022**, p. 6922.
- 78. Bi S., Liang J., *Experimental studies and optimization of process parameters for burrs in dry drilling of stacked metal materials*, Int J Adv Manuf Technol **2011**, p. 867-876.
- 79. Shetty P. K., Shetty R,m Shetty D,m Rehaman n F., Jose T. K., Machinability Study on Dry Drilling of Titanium Alloy Ti-6Al-4V using L₉ orthoganal array, International Conference on Advances in Manufacturing and Materials Engineering, AMME 2014, p. 2605-2614.
- Bronis, M.; Miko, E.; Nowakowski, L. Analyzing the Effects of the Kinematic System on the Quality of Holes Drilled in 42CrMo4 + QT Steel. Materials 2021, p. 4046
- Bronis, M.; Miko, E.; Nowakowski, L. Influence of the Kinematic System on the Geometrical and Dimensional Accuracy of Holes in Drilling. Materials 2021, p. 4568
- 82. Bronis, M.; Miko, E.; Nowakowski, L.; Bartoszuk, M. A Study of the Kinematics System in Drilling Inconel 718 for Improving of Hole Quality in the Aviation and Space Industries. Materials **2022**, p. 5500
- 83. Bronis, M.; Miko, E.; Nozdrzykowski, K. Drilling Strategies to Improve the Geometrical and Dimensional Accuracy of Deep through Holes Made in PA6 Alloy. Materials **2023**, p. 110.

NORMY

[N1] - Norma PN-EN ISO 1101:2017-05 "Specyfikacje geometrii wyrobów (GPS) Tolerancje geometryczne Tolerancje kształtu, kierunku, położenia i bicia"

[N2] – Norma PN-EN ISO 12181-1:2011 "Specyfikacje geometrii wyrobów (GPS) Okrągłość Część 1: Terminologia i parametry okrągłości"

[N3] – Norma PN-EN ISO 12180-1:2012 "Specyfikacje geometrii wyrobów (GPS) Walcowość Część 1: Terminologia i parametry kształtu walcowego"

[N4] – Norma PN-EN ISO 12181-2:2012 "Specyfikacje geometrii wyrobów (GPS) Okrągłość Część 2: Operatory specyfikacji"

[N5] – Norma PN-EN ISO 12180-1:2012 "Specyfikacje geometrii wyrobów (GPS) Walcowość Część 2: Operatory specyfikacji"

[N6] – Norma PN-ENO ISO 21920-2 " Specyfikacje geometrii wyrobów (GPS) Struktura geometryczna powierzchni: Profil Część 2: Terminy, definicje i parametry struktury geometrycznej powierzchni"

STRONY INTERNETOWE

[S1] https://www.hahn-kolb.net/-/11105060.sku/pl/PL/EUR/

[S2] <u>http://www.sauter-</u> tools.com/sauterproductadvisor/details.htm?toolId=113180

 $[S3] \underline{https://pl.dmgmori.com/produkty/obrabiarki/toczenie/uniwersalna-obrobka-tokarska/ctx/ctx-alpha-500}$

[S4] <u>https://www.zeiss.pl/metrologia/produkty/systemy/wspolrzednosciowe-maszyny-pomiarowe/portalowe-maszyny-pomiarowe/prismo.html</u>

[S5] <u>https://www.kronosedm.pl/</u>

STRESZCZENIE

W niniejszej rozprawie doktorskiej wykonano badania eksperymentalne procesu wiercenia głębokich otworów w pięciu różnych materiałach (stali C45, stali ulepszonej cieplnie 40HM+QT, stopie aluminium PA6, stopie mosiądzu MO58 oraz Inconelu 718) stosując trzy różne układy kinematyczne.

Badania poprzedzono analizą stanu wiedzy z zakresu procesu wiercenia głębokich otworów. Przedstawiono dotychczasowe osiągnięcia z tego zakresu. Opracowano metodykę badawczą procesu wiercenia. Dodatkowo w pracy badawczej opracowano dla różnych materiałów teoretyczno-doświadczalne modele do prognozowania chropowatości powierzchni, odchyłki walcowości, prostoliniowości, okrągłości, błędu średnicy, wysokości oraz szerokości zadzioru powstającego na wyjściu otworu. Modele cechowały się dużymi wartościami współczynników determinacji (ponad 70%).

Przedstawiono charakterystykę: trzech układów kinematycznych procesu wiercenia, narzędzi, oprawki, maszyn, materiałów, mocowań, kształtu oraz sposobu kodowania próbek wykorzystanych w badaniach.

Opracowano wyniki badań dotyczących analizy dokładności wymiarowokształtowej otworów (odchyłki walcowości, prostoliniowości, okrągłości oraz błędu średnicy otworu). Układ kinematyczny miał kluczowe znaczenie w wielu parametrach dokładności wymiarowo-kształtowej otworów (w zależności od materiału). Wykorzystano analizę statystyczną ANOVA oraz zasymulowano wybrane stworzone modele matematyczne prognozujące wartości parametrów wyjściowych. Z analiz wynika, że wybór układu kinematycznego jest zależny od zastosowanego materiału.

Analizowano chropowatość powierzchni wykonanych otworów opisanych trzema wybranymi parametrami (Ra, Rz, Rt). Najmniejsze wartości wybranych parametrów chropowatości powierzchni, uzyskano stosując drugi układ kinematyczny, dla stali ulepszonej cieplnie 40HM+QT. Natomiast najmniejsze wartości parametrów Ra, Rz i Rt uzyskano stosując pierwszy układ kinematyczny dla stali C45, stopu mosiądzu MO58 oraz Inconelu 718.

W dalszej części pracy przedstawiono analizę zadziorów na wyjściu otworu względem dwóch parametrów szerokości oraz wysokości zadziorów na wyjściu otworu. W tym przypadku tylko stop mosiądzu MO58 uzyskał jeden najkorzystniejszy układ kinematyczny (trzeci).

Każdy podrozdział pracy zawiera analizę statystyczną, budowę oraz symulację modeli matematycznych. Zaprezentowano szczegółową analizę odchyłki walcowości względem zniekształcenia linii środkowej. Wykonano analizę przypadków odchyłek okrągłości za pomocą analizy Fouriera. W stali C45 oraz stali ulepszonej cieplnie 40HM+QT w każdej części otworu dominowała trójgraniastość, niezależnie od zastosowanego układu kinematycznego. Wykonano optymalizację wielokryterialną – Grey Relational Analysis. Na jej podstawie wybrano najkorzystniejszy układ kinematyczny oraz wartości parametrów technologicznych dla których uzyskano najmniejsze wartości parametrów wyjściowych.

ABSTRACT

In this dissertation, an experimental study of the process of drilling deep holes in five different materials (C45 steel, 40HM+QT tempered steel, PA6 aluminum alloy, MO58 brass alloy and Inconel 718) was performed using three different kinematic systems.

The research was preceded by an analysis of the state of knowledge in the field of the deep hole drilling process. Previous achievements in this field were presented. A research methodology for the drilling process was developed. In addition, in the research work, theoretical and experimental models were developed for various materials to predict surface roughness, deviation of cylindricity, straightness, roundness, diameter error, height and width of the burr formed at the exit of the hole. The models were characterized by high values of determination coefficients (more than 70%).

The characteristics of: the three kinematic systems of the drilling process, the tools, the toolholder, the machines, the materials, the fixtures, the shape, and the coding of the specimens used in the study are presented.

The results of studies on the analysis of the dimensional-shape accuracy of holes (deviations of cylindricity, straightness, roundness and hole diameter error) were developed. The kinematic system was crucial in many parameters of dimensional-shape accuracy of holes (depending on the material). ANOVA statistical analysis was used, and selected created mathematical models predicting the values of the output parameters were simulated. The analyses show that the choice of kinematic system depends on the material used.

The geometric structures of the surfaces of the drilled holes described by three selected parameters (Ra, Rz, Rt) were analyzed. The smallest values of the selected surface roughness parameters were obtained using the second kinematic system for 40HM+QT tempered steel. In contrast, the smallest values of Ra, Rz and Rt parameters were obtained using the first kinematic system for C45 steel, MO58 brass alloy and Inconel 718.

The rest of the paper presents an analysis of the burrs at the hole exit against two parameters of the width and height of the burrs at the hole exit. In this case, only MO58 brass alloy obtained the single most favorable kinematic system (the third).

Each subsection of the paper includes statistical analysis, construction and simulation of mathematical models. A detailed analysis of cylindricity deviation versus centerline distortion is presented. Case analysis of roundness deviations using Fourier analysis was performed. In C45 steel and 40HM+QT tempered steel, three-roundness was dominant in every part of the hole, regardless of the kinematic system used. A multi-criteria optimization - Grey Relational Analysis - was performed. Based on it, the most favorable kinematic system and the values of technological parameters for which the smallest values of output parameters were obtained were selected.