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Thesis Abstract

The dissertation thesis concerns the dynamic stability analysis of tensegrity domes. The
consideration includes the most known tensegrity domes, i.e., Geiger dome and Levy dome.
These structures are distinguished from the traditional cable-strut steel domes by the presence
of some unusual features. These domes are characterized by the presence of a self-equilibrated
set of forces (the initial prestress), that stabilize the infinitesimal mechanisms. The analysis of
tensegrity domes includes the influence of the initial prestress level on structure response.
Considered domes with different structural modifications to compare their behaviour are
presented. The modifications include different types of upper sections (open or closed upper
sections) and additional circumferential cables (only in the case of the Geiger domes). Three
types of analyses are performed, i.e., static, dynamic, and dynamic stability analysis. The
influence of the initial prestress level on the static parameters (displacements, stiffness, and
maximum effort), dynamic parameters (natural and free frequencies), and most importantly, the
distribution and range of the unstable regions are considered.

The analysis proved that the ability to control static and dynamic parameters with initial
prestress is possible only in the case of the existence of an infinitesimal mechanism or
mechanisms. Additionally, structures with a larger number of infinitesimal mechanisms are
more sensitive to the change in the initial prestress level. In the case of the Geiger domes,
structural modifications caused reducing a number of mechanisms, thus influence of the initial
prestress level. For the Levy dome, the change of the upper section (from a closed one to an
open one) resulted in the appearance of one local infinitesimal mechanism, however, the
behaviour is similar to the structure without the mechanism.

The analysis of the unstable regions showed, that the widest unstable regions appear at the
minimum prestress level. Nonetheless, the increase in the initial prestress level results in the
complete or partial narrowing of unstable regions. Additionally, the shape and range of the
unstable region are also connected to the external load situation.

The thesis concluded with answers to the questions asked at the beginning of the
consideration and summarized with advantages and disadvantages of the considered structures.
The summary includes the authors’ design guidelines for the future application of tensegrity

domes in civil engineering.



Thesis Abstract (in Polish)

Rozprawa doktorska dotyczy analizy statecznos$ci dynamicznej kopul tensegrity.
Rozwazania obejmuja najbardziej znane kopuly tensegrity, tj. kopule Geigera i kopule
Levy'ego. Konstrukcje te rdznig si¢ od tradycyjnych stalowych kopul ciggnowych obecnoscig
pewnych nietypowych cech. Kopuly te charakteryzuja si¢ obecno$cig samozrownowazonego
uktadu sit wewnetrznych (wstgpnego sprezenia), ktory stabilizuje nieskonczenie mate
mechanizmy. Analiza kopul tensegrity obejmuje wplyw stanu samonaprezenia na odpowiedz
konstrukcji. Przedstawiono rdzne, znane z literatury, modyfikacje strukturalne, w celu
porownania wpltywu tych modyfikacji na zachowanie koput. Analizowane sga kopuly z
srodkowym pier§cieniem (otwarta gorna sekcja) lub bez (zamknigta gorna sekcja). Dodatkowo,
w przypadku koput Geigera, uwzgledniono dodatkowe kable obwodowe taczace gorne wezty.
Przeprowadzono trzy rodzaje analiz, tj. analiz¢ statyczna, analiz¢ dynamiczng i analizg
stateczno$ci dynamicznej. Rozwazono wpltyw wstepnego sprezenia na parametry statyczne
(przemieszczenia, sztywno$¢ i maksymalne wytezenie), parametry dynamiczne (czgstotliwosci
drgan wiasnych i swobodnych), a przede wszystkim na rozktad obszarow niestatecznosci.

Analiza wykazala, ze mozliwos$¢ kontroli parametrow statycznych i dynamicznych za
pomoca wstepnego sprezenia jest mozliwa tylko w przypadku istnienia mechanizmu
infinitezymalnego (lub mechanizméw). Dodatkowo, konstrukcje z wigkszg liczbg
mechanizmow infinitezymalnych sa bardziej wrazliwe na zmiang poziomu wstgpnego
sprezenia. W przypadku kopul Geigera modyfikacje strukturalne spowodowaty zmniejszenie
liczby mechanizméw, a tym samym wplyw naprezenia wstepnego. W przypadku koput
Levy'ego zmiana gornej sekcji (z zamknigtej na otwartg) spowodowata wystgpienie jednego,
lokalnego mechanizmu infinitezymalnego, jednak zachowanie tej koputy jest podobne do
struktury bez mechanizmu.

Analiza statecznosci dynamicznej wykazata, ze najszersze obszary niestateczne wystepuja
przy niskim poziomie wstepnego Sprezenia. Niemniej jednak wzrost poziomu wstepnego
sprezenia powoduje czeSciowe lub catkowite zwezenie obszaréw niestatecznosci.

Rozprawe zakonczono odpowiedziami na postawione na poczatku rozwazan pytania oraz
podsumowano zalety i wady rozwazanych konstrukcji. Dodatkowo, w podsumowanie zawarto
sugerowane wytyczne projektowe, dotyczace przysziego zastosowania kopul tensegrity w

inzynierii ladowej.
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Abbreviations and symbols

Abbreviations and symbols (in order of appearing in the text)

°c Initial configuration

t Time

tc Actual configuration at the moment ¢
At Time increment

trite Actual configuration at the moment t + At

A, Initial cross-section

Ly Initial length

A Cross-section

l Length

q Nodal coordinates vector

Q Nodal forces vector

qi Displacement

Q; Nodal force
Kr Tangential stiffness matrix

R Residual force vector

Inertial forces vector

K, Linear stiffness matrix
S Initial prestress vector
K¢ Geometry stiffness matrix that depends on the initial prestress vector S
N Axial forces vector
Ken Geometry stiffness matrix that depends on the axial forces vector N
Ky. Non-linear stiffness matrix
Ky Displacement stiffness matrix
S Initial prestress level
Vs Self-stress state

o Initial stress



Abbreviations and symbols
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Axial force

Young modulus

Displacement increment

Actual axial force

Number of elements

Number of degrees of freedom

Extension matrix

Stress vector

Comepatibility matrix

Diagonal matrix of eigenvalues of the compatibility matrix D

Eigenvector of the compatibility matrix D corresponded to zero eigenvalue of

the matrix H, responsible for the self-stress state
Zero eigenvalue of the compatibility matrix D
Diagonal matrix of eigenvalues of the linear stiffness matrix K;,

Eigenvector of the linear stiffness matrix K; corresponded to zero eigenvalue

of the matrix L, responsible for the mechanism

Zero eigenvalue of the linear stiffness matrix K;,

Eigenvalues of the linear stiffness matrix K, and the geometric stiffness matrix
K

Eigenvector of the linear stiffness matrix K; and the geometric stiffness matrix
K

Diagonal matrix of eigenvalues o; of the stiffness matrix consisted of linear
matrix K; and geometric matrix K

Set of all elements of the structure

Set of elements of the structure with the same length

First element in the set of elements of the structure with the same length

Last element in the set of elements of the structure with the same length

i-th level of the initial prestress

Maximum level of initial prestress



Abbreviations and symbols

ng
ns

nm

Wmax,C

Fitness function

Component of fitness function related to the stiffness matrix
Component of fitness function related to the equilibrium of nodes
Equilibrium of nodes

Force projection on x axis

Force projection on y axis

Force projection on z axis

Minimum level of initial prestress

Load-bearing capacity

Maximum effort of elements

Global Stiffness Parameter

Secant stiffness matrix

Amplitude vector

Frequency

Mass matrix

Constant part of the periodic load

Amplitude of the periodic load

Load frequency

Natural frequency of the structure loaded with a constant part of the load

Acceleration vector

Pulsatility index

Resonant frequency of the external load vibrations

The angle of inclination of cables of the load-bearing girder
The angle between perimeter cables

Number of load-bearing girders

Number of struts

Number of infinitesimal mechanisms

Maximum effort of cables



Abbreviations and symbols

Wmax,S

f total

fnm

fadd

Ay

A

Maximum effort of struts

Vertical load applied according to z axis

Plane load applied on plane of x and y axes

Steel density

Total number of frequencies dependent on the initial prestress
Number of frequencies that correspond with the mechanism
Number of additional frequencies dependent on the initial prestress
The area of the unstable region

Non-dimensional parameter that measures changes in areas of unstable regions

depending on the initial prestress level
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1. Introduction

1. Introduction

1.1. Subject of consideration

Tensegrity domes are composed of compressed (struts) and tensed (cables) elements. The
struts never touch and are surrounded by a continuous network of cables. There are some
characteristic features that distinguishes them from the traditional rod-like structures. The
immanent features are self-stress state and infinitesimal mechanism. The self-stress state can
be defined as a system of self-equilibrated forces that satisfy the homogeneous equation of
equilibrium (the initial prestress). The absence of these forces makes the tensegrity structure
unstable, i.e., geometrically variable. The initial prestress must be introduced to the structure to
stiffen the existing infinitesimal mechanism and ensure stabilization. The self-stress state
depends only on the geometry of the structure, and is independent of external loads. The
infinitesimal mechanisms, unlike finite mechanisms, describe the local geometric variability to
the infinitesimal displacements. Changing the initial prestress allows controlling the behaviour
of the tensegrity system under various loads and influences the stiffness of the structure.

The idea of tensegrity was mainly associated with art, and to a lesser extent with
architecture, and consequently, with construction. In recent years, the interest of architects and
engineers in the practical application of these solutions has increased: “Tensegrity: from Art to
Structural Engineering” [1]. This is confirmed by numerous scientific works on the design of
tensegrity systems, opening new perspectives for construction and application.

Currently, many research teams worldwide are working on tensegrity structures. It is
impossible to list all the scientists, but the leaders include René Motro (France), Robert E.
Skelton (USA), Hidenori Murakami (USA), Bin-Bing Wang (Singapore), and Y. Kono (Japan).
Important monographs on tensegrity include: “An Introduction to Tensegrity” [2], “Tensegrity:
Structural Systems for the Future” [3], “Tensegrity Systems” [4], “Art and Ideas” [5], and
“Tensegrity Structures: Form, Stability, and Symmetry” [6].

In Poland, relatively few researchers are involved in tensegrity structures. Wactaw
Zalewski, considered a pioneer, designed the roof of Supersam in Warsaw in 1962 and the roof
of the sports hall in Katowice in 1971. The first use of tensegrity as a bridge structure was the
KL-03 footbridge over the S-7 Salomea — Wolnica route in Magdalenka, designed by Bogustaw
Markocki [7, 8]. The only monograph published in Polish on tensegrity structures is Zbigniew
Bieniek's work [9] “Tensegrity — Integrating Tension in Architectural Systems.” This

monograph is contributory in nature. Bieniek presented geometrically diverse systems and
11



1. Introduction

structures for use in construction technology. He also supplemented the current classification
of tensegrity systems by adding a new class, 0 (theta), which includes systems with a disjoint
network of tendons. Bieniek's research is primarily architectural and focuses on the search and
presentation of morphological methods for shaping these structures [10-17]. In turn, Wojciech
Gilewski deals with tensegrity from a mechanical perspective [18-29]. Under his supervision,
three doctoral theses have been completed on the use of tensegrity structures in bridge
construction [30], the possibility of using tensegrity as an intelligent structure [31], and the
potential use of tensegrity structures in building construction [32]. In the cooperation with Al
Sabouni-Zawadzka the research on orthotropic tensegrity models [33-36] and metamaterials
[37, 38] was conducted. From the experimental point of view, works regarding the effect of
prestressing [39], tensegrity towers [40], and the dynamic response of tensegrity structures [41]
were presented by Malyszko and Rutkiewicz.

Attempts to apply tensegrity structures in construction date back to the origins of the idea
itself. Among the first constructions were geodesic domes, patented by Fuller in 1954 [42].
These domes are characterized by high load-bearing capacity with minimal use of construction
materials. Unfortunately, they require complex analyses due to large deformations,
susceptibility to dynamic loads, and the necessity to analyze individual assembly phases.
Additionally, the process of prestressing the structure is challenging [43, 44].

In recent years, there has been an increase in interest in the application of tensegrity
structures in construction. It applies to both standard and non-standard applications. This
increase is due to the enhanced design and execution capabilities, which are related to the
development of advanced computational techniques and the advancement of construction
technologies and materials.

Standard applications refer to the use of the tensegrity concept for building domes, plates,
towers, masts, bridges, and footbridges. Non-standard applications involve intelligent
construction and the use of the tensegrity concept in creating innovative materials, so-called
metamaterials.

The research topic addressed is dictated by the need to supplement the existing literature,
in which the problem of parametric resonance of tensegrity structures has not been highlighted
so far. From an engineering point of view, the technical significance of instability areas is
particularly large because if the load parameters fall within the designated area, oscillations
with increasing amplitude occur. These oscillations are dangerous in terms of the durability of
the structure. There is extensive literature on parametric vibrations that essentially resolves all

the basic issues. Nonetheless, tensegrity structures are a special example of constructions. They
12



1. Introduction

are characterized by an additional parameter, the state of self-stress, which affects the shape
and extent of these areas. In this work, surface tensegrity structures, such as double-layer grids

and domes, whose application in construction is increasingly common, will be analyzed.

1.2. Purpose, scope and assumptions of the work

The research problem involves the analysis of the behavior of tensegrity domes subjected
to a periodic load. Particularly, the influence of the initial prestress level on the structure’s static

and dynamic parameters is considered.

The research hypothesis is formulated as follows:
1. Control of static and dynamic parameters is only possible for tensegrity domes that
exhibit an infinitesimal mechanism.
2. Structural modifications can both improve and impair domes’ response to the
external load.
3. The initial prestress level affects the distribution of dynamic unstable regions in
tensegrity domes subjected to periodic loads.

The research purpose and scope are to investigate the behavior of tensegrity domes under
the influence of loads (time-independent and periodic). To achieve this aim, the following
questions must be answered:

i.  How does initial prestress impact the static parameters of the domes with and

without infinitesimal mechanisms?

ii.  What is the relation between the initial prestress level and vibration frequencies
that correspond to the infinitesimal mechanisms?

iii.  What is the relation between the initial prestress level and vibration frequencies
that do not correspond to the infinitesimal mechanisms?

iv.  How does the initial prestress level influence the distribution and range of unstable
regions?

v. How does the position and value of the external load influence the static and
dynamic responses of the dome?

vi.  How does structural modification influence the static and dynamic responses of the
dome?

vii.  What are the design guidelines for the application of tensegrity domes?

13



1. Introduction

The following assumptions were adopted for the research:

— the structure material (steel) is continuous, uniform, and isotropic,

— constitutive equations are linear,

— structure consists of only stressed elements (cables) and only compressed elements

(struts),

— all elements are straight and of comparable length,

— the structures are initially prestressed, by means no cable is loose (the sag effect on the

effective elasticity modulus is neglected),

— the minimum prestress level ensures only tension forces in the cables in each

computational situation,

— tensed elements create a continuous net, whereas, compressed elements never touch,

thus are not subjected to large buckling loads,

— nodes are ideal ball joints,

— supporting bonds are fixed, and scleronomic,

— loads are conservative,

— large displacement gradients are possible,

— the elements assumed to be weightless in the static considerations,

— the impact of dumping was omitted in the dynamic considerations.

Theoretical studies and numerical simulations are conducted. Since tensegrity structures
without considering the initial prestress level are geometrically variable, their analysis using
commercial software is more complicated. Additionally, the inclusion of initial prestress is only
feasible by introducing the appropriate axial load to all elements. The numerical analysis in this
work utilizes a computational procedure encompassing the analysis of geometrically nonlinear
rode systems. This procedure is based on the finite element method and allows for a
comprehensive analysis at any initial prestress level defined in the pre-stressed tensegrity
element.

The computational module is written in the Mathematica environment, which simplifies
operations through the use of its built-in functions and commands. The solution of the algebraic
nonlinear system of equations executed using the Newton-Raphson method is implemented in
the mentioned environment. The program allows for the flexible definition of the construction
geometry, material parameters, initial stresses, and loads and will enable tracking the behavior

of selected static, geometric, and dynamic parameters.

14



1. Introduction

1.3. Dissertation draft

The work consists of seven main chapters, whereas the first chapter contains the
introduction to the subject of consideration (Chapter 1).

Chapter 2 presents the general concept of tensegrity structures. This part focuses on the
history and evolution of tensegrity, covering the development from the idea to its application,
including the first originators and their successors. The chapter includes a thorough literature
review of existing research on tensegrity structures and also discusses the current state of
knowledge in the field of dynamic stability analysis of tensegrity. To present the research
subject in detail about tensegrity domes, the chapter delves into the origin, history, analysis,
and application of cable-strut tensegrity domes.

Chapter 3 focuses on the geometrically nonlinear mathematical model applied to the
analysis of tensegrity systems. It presents the equilibrium equations for a single finite element
and for the complex structure. The presented description is further applied to the qualitative and
quantitative analyses of the tensegrity domes.

The main subject of Chapter 4 is the qualitative and quantitative analysis of the tensegrity
structures. The qualitative analysis focuses on the identification of self-stress states (initial
prestress) and infinitesimal mechanisms. Two methods of the analysis are described, i.e.,
spectral analysis of truss matrices and genetic algorithm. In turn, the quantitative analysis is
divided into static, dynamic, and dynamic stability analyses. This assessment concerns the
influence of the initial prestress level on the static parameters (displacements, stiffness, and
maximum effort of the structure) and dynamic parameters (natural and free frequencies), and
on the distribution of the unstable regions.

Chapter 5 is focused on the first type of the analyzed tensegrity domes, i.e., the Geiger
dome. The history of the first appearance, patented geometry, and up-to-date research are
provided. The several variants of considered domes are presented, i.e., small-scale domes, real-
scale domes, and examples from the literature. Qualitative and quantitative analyses are
performed.

Chapter 6 describes the second type of analyzed tensegrity domes, i.e., the Levy dome.
The introduction covers the first inventor, design solutions, and literature review. Next, the
geometry of the analyzed structures, i.e., small-scale domes, real-scale domes, and examples
from the literature is provided. The qualitative and quantitative analyses are performed.

The thesis is finished with Chapter 7 which highlights the main conclusions and

achievements of the work. In particularly, answers the questions from Chapter 1.2.

15



1. Introduction

A list of figures, tables, and references are provided at the end of the work, along with the

calculation program developed in the Mathematica and Python environments.
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2. Concept and application of tensegrity structures

2. Concept and application of tensegrity structures

2.1. Introduction

Tensegrity systems are novel solutions in the field of civil engineering. Initially considered
only as works of art, they later gained popularity among scientists worldwide. These structures
are characterized by their characteristic features, i.e., self-stress state and infinitesimal
mechanism, which are important in the context of the potential use of tensegrity systems as
adaptive and deployable “smart structures”. Due to their unique properties, tensegrity systems
can be implemented in various areas of science.

Furthermore, tensegrity structures offer several advantages over traditional engineering
solutions. Their lightweight nature makes them ideal for applications where weight is a critical
factor, such as in aerospace engineering and portable architectural structures. The inherent
flexibility and adaptability of tensegrity systems also make them suitable for dynamic
environments where traditional static structures might fail. In addition to their practical
applications, tensegrity systems also hold aesthetic value due to their visually striking and
intricate designs. This blend of form and function has led to their use in innovative architectural
projects, where structural integrity and artistic appeal are equally prioritized. Architects and
engineers are increasingly exploring tensegrity principles to create sustainable and energy-
efficient buildings, leveraging the minimal material usage and optimal load distribution
inherent to these structures.

In conclusion, tensegrity systems represent a significant advancement in structural
engineering, offering a unique combination of strength, flexibility, and efficiency. Their
potential for adaptation, deployability, and aesthetic integration makes them a promising area
of study and application, poised to address some of the most pressing challenges in modern

engineering and beyond.

2.2. Historical review

The first tensegrity structure is considered to be a sculpture made by Kenneth Snelson in
1948. It presented the original concept of “self-stressed structures composed of rigid struts and
cables, with compressive and tensile forces that form an integrated whole” [45]. Initially, the
idea was associated mainly with art and to a small extent with architecture and construction.
Hugh Kenner was the first person who brought tensegrity from the world of art to the technical

sciences. In his book [46], he initiated the systematic study of tensegrity systems, performed
17



2. Concept and application of tensegrity structures

static analysis, and developed a prestressed configuration of the expanded octahedron. At the
same time, Anthony Pugh elaborated on the practical principles of building simple tensegrity
systems in his book [2]. The main advantage of these works was raising awareness of tensegrity
structures and laying the foundation for further research.

In 1978, the British engineer Christopher Calladine noticed that the existence of an
infinitesimal mechanism in a frame that fulfills Maxwell’s rule [47] implies an appropriate self-
stress state. In the absence of a self-stress state, the stiffness of the mechanism is zero.
Infinitesimal mechanisms in tensegrity structures are stiffened by introducing the self-stress
state [48, 49]. New research initiated by Calladine was continued by Pellegrino [50, 51] and
Hanaor [52, 53]. Pellegrino and Calladine developed new methods for segregating rigid struts,
identifying mechanisms, and detecting when the self-stress state is beneficial [54]. They refined
the method of segregation of first-order mechanisms and high-order mechanisms. The study of
infinitesimal mechanisms, self-stress states, geometry, and stability of tensegrity was continued
by Murakami et al. [55-57].

A key issue in the study of tensegrity structures is their susceptibility to the initial prestress.
The problem of finding the appropriate initial prestress has been investigated by many
researchers. Existing methods for determining the appropriate initial prestress can be divided
into exact and approximate (including numerical methods). The first numerical solution was
proposed by Murakami and Nishimura [58-60] for dodecahedral and icosahedral modules of
tensegrity structures. Numerical methods were also applied by Motro and Pellegrino, though
they were effective only for some computational problems. Over time, the development of other
methods began to emerge, known as “form-finding methods” [61-66]. These methods involve
determining the configuration of the elements that result in a stable self-stress state in the
system. The most frequently used methods are analytical solutions [19], nonlinear programming
[50], dynamic relaxation [67], force density method [68], and many others. A comprehensive
overview of the form-finding methods was provided in [64, 69, 70]. The search for new forms
of tensegrity structures is defined as a qualitative analysis and is a main step in the analysis of
tensegrity structures.

The influence of the self-stress state, and more specifically, the influence of the initial
prestress level, on the behaviour of the structure is considered the next step in the analysis of
tensegrity structures (quantitative analysis). The static response of tensegrity structures to
external loads has been studied by many scientists [53, 55, 56, 58, 59, 71-78]. Due to the
flexibility of the systems, the research required a nonlinear approach. Nonlinear analysis

revealed emergent properties and strong anisotropy in tensegrity systems. Among other
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2. Concept and application of tensegrity structures

findings, procedures for optimizing of stiffness-to-mass ratio for symmetric and asymmetric
structures were developed [79-83]. Most of the research is concentrated on theoretical studies
[69, 73, 84] and small-scale models are rarely used for actual tests [53, 74, 85, 86]. The dynamic
response of the tensegrity systems, on the other hand, is still under study. The literature review
distinguished the following areas of research:

— methods directed at designing and searching for stable construction forms,

— algorithms that change the shape of the structure: optimization algorithms used to
generate new topologies; the new topology aims to achieve the desired performance
criteria, such as the level of stiffness,

— methods of controlling the shape of the structure: examining how the structure
changes its shape under the influence of external forces,

— parametric analysis that considers the influence of the initial prestress level on the
dynamic behaviour of the structure.

Significant progress in the dynamic research of tensegrity structures was made in the
1990s. The use of controlled structures was considered, particularly in the area of ensuring
reliability, failure resistance, and control over the model. The first paper on controlling
tensegrity structures was presented by Skelton and Sultan [87]. Soon after, other researchers
continued the investigation of active control of tensegrity structures [88-95]. The purpose of
research on active control was to reduce vibration in the system and increase efficiency. The
influence of the initial prestress level of the tensegrity modules [58, 96, 97], six-strut spherical
modules [98], tensegrity grids [99], and clustered systems [100] has been investigated.

Currently, interest in tensegrity structures has increased in the fields of applied sciences
and engineering. These structures are often called “structures of the future” [3] and are seen as
potential solutions to various problems. In recent years, architects and engineers have been
looking for practical applications of tensegrity systems [1]. Tensegrity systems have found wide
application in aviation and aerospace engineering due to their relatively low weight and high
resistance to vibrations. The use of tensegrity has been considered in components of satellites
[101], spacecraft [102, 103], telescopes [104], antennas [95], robots, and damping systems. In
civil engineering, the application of tensegrity was initially limited to architectural elements [9,
43, 105, 106]. Gradually, they were implemented in the dome structures [29, 107-111] and the
construction industry [27, 32]. Notably, tensegrity structures have been implemented in bridges
[30, 31, 112-114] and coverings [115].

19



2. Concept and application of tensegrity structures

Tensegrity structures are also used in biology and biomechanics, mostly to determine the
behaviour and functioning of cells [116], and to design robots and artificial intelligence systems
[80, 81, 92, 117]. Additionally, the tensegrity system has been used in the design of new

materials, known as metamaterials [17, 37, 38, 118-121].

2.3. Tensegrity domes

The prestressed cable-strut domes are an example of tensegrity structures. These structures
can have some tensegrity features, but their genesis is not directly related to tensegrity. The first
application of such a solution was the roof of the auditorium in Utica, in the United States,
completed in 1959. The supporting structure of the roof, with a span of 76.2 m, consisted of
radially placed flat girders composed of pairs of tensioned tendons supported by vertical,
compressed struts. The girders were connected in internal rings with a diameter of 7 m. The
tendons are anchored around the circumference in a rigid reinforced concrete ring. Prestressing
ensured that the struts remained compressed and the tendons stretched. The lower tendons were
of major importance in terms of the load-bearing capacity of the structure, and the upper ones
allowed for the introduction of prestressing forces [122].

The first tensegrity cable-strut dome is considered to be the Geiger dome, patented in 1988
[115]. Geiger combined Fuller's tensegrity principle with the principle of creating compressed
cable networks, and thus presented a new non-triangular spatial system of elements. The new
patented system was called “Cabledome”. The main principle behind Geiger’s dome is that all
tension is achieved through the roof structure by means of tensed cables and discontinuous
compressed struts. The original structure consisted of radial trusses, with tensed and
compressed elements. One of the main advantages of such a structure is that its weight per
sguare meter does not change as the span increases, and can be successfully used in long-span
roofs. Unlike high-profile Fuller domes, the Geiger domes have a low-profile configuration that
reduces wind lift, and uneven snow settling, and uses less roofing material. After its appearance,
the Geiger dome was the subject of many theoretical and experimental studies [29, 123-126].
The further configurations were presented by Terry [111], Hanaor [53, 73, 108], and others. As
well as new design solutions, the analysis of tensegrity domes was the major area of interest.
The geometrically nonlinear analysis of tensegrity systems [71], the prestress problem [104,
127], the equilibrium conditions [128, 129], and other aspects were studied.

An example of the implementation of the Geiger dome is the roof of the 1986 Olympic
Hall in Seoul (KSPO Dome). The roof supporting structure of 120 m span consisted of radially

arranged flat girders, as in the case of the auditorium in Utica in the United States. However, in
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2. Concept and application of tensegrity structures

this solution, instead of the lower rope, the struts are based on the diagonal and lower
circumferential cables (Fig. 2.1) [109, 130-132]. The load was transferred from the central
tension ring, through a series of radial ridge cables and the tension hoops, to the peripheral

clamping ring.

Fig. 2.1. Olympic Hall roof in Seoul during the construction [132]

Another example of a tensegrity dome is the roof of the Sports Hall in Katowice (Spodek
by Wactaw Zalewski). The structure is a modified Geiger dome (Fig. 2.2). Unlike the typical
solution, in this case, the roof structure with a span of 126 m uses a system of elements with
lower and upper radial cables. The roof consists of 120 strut-cable girders, and a dome is

supported on the inner ring, illuminating the interior of the hall [32, 133-135].

a) b)

Fig. 2.2. Spodek Hall in Katowice during the construction: a) upper section [136], b) side view [137]

It is also worth mentioning the first tensegrity structure by W. Zaleski Supersam roof in
Warsaw (Fig. 2.3). In contrast to structures in a radial system, the supporting structure was
composed of several parallel girders. The girders were composed of steel struts and top and
bottom chords. The vertical load of the cover was taken up by the lower tensed chords.
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Fig. 2.3. Roof of Supersam in Warsaw [138]

A slightly different solution for the cable dome, compared to Geiger, was developed by
Matthys Levy. Levy's dome consisted of a network of tendons connected at nodes, equally
spaced along the meridians. Levy's idea was used to build a stadium cover in Atlanta (Georgia
Dome) in the United States in 1992 [110, 139-142]. This is an example of the largest existing
dome in the world - the dome was built on an ellipse plan with dimensions of 227x185 m, with
an area of 37,200 m? (Fig. 2.4). To improve the mechanical behavior of the cable dome, the
additional hoop cables and changing the arrangement of the struts on the diagonal struts were

used.

Fig. 2.4. Structure of Georgia Dome roof [139]

An interesting example of cable covering is the White Rhino membrane roof supporting
structure in Chiba (Japan), built in 2001 (Fig. 2.5). The name of the structure refers to the
external appearance of the roof, which resembles a rhinoceros. The structure is based on two
modified three-strut trapezoidal modules of different dimensions, with an added central vertical
strut. The height of the larger module is 9 m, and the length of the base side is 12 m. The

dimensions of the smaller module are 6 m and 9 m, respectively. The modification of the
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2. Concept and application of tensegrity structures

modules involves the addition of seven additional elements, i.e., six tendons and one strut.
Three additional cables extend between the six unconnected vertices of the module. In turn, the
added strut is connected to the module using three further cables and constitutes a form of roof
support. Additional elements do not change shape but affect the nature of the structure and
improve its stiffness. The modification leads to the disappearance of the infinitesimal
mechanism. These elements limit the large deformation of the membrane and transfer the load
from the roof membrane to the rigid truss frame [143-145].

A lot of different structures that consist of tensed cables and compressed struts can have

tensegrity features. The detailed analysis was provided in [32].

Fig. 2.5. White Rhino structure [143]
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3. Geometrically nonlinear mathematical model

3.1. Introduction

The qualitative analysis of classical lattice structures can be carried out assuming small
displacements, i.e., a linear geometric model, or second-order theory, i.e., a quasi-linear model.
However, in the case of tensegrity systems, both these approaches are inadequate. The
important feature of the tensegrity structure, which is related to the stiffening of the structure
under the influence of an external load, is not considered in either approach. If an external load
causes the displacement in accordance with the form of the infinitesimal mechanism, additional
prestress of the structure occurs - tensile forces generate additional tensile forces in the cables
and compressive forces in the struts. In such circumstances, the initial response cannot be used
to determine the behavior of the structure. Therefore, the analysis should be carried out
assuming the hypothesis of large displacements (third-order theory).

Tensegrity systems are spatial lattice systems in an initial prestress. The structure consists
of tensed cables and compressed struts, and cables do not have compression rigidity. The
elements are rectilinear with comparable length. The main tensegrity feature is stabilizing the
existing infinitesimal mechanisms by means of the initial prestress. The second one is the size
of the displacements, which can be large even if the deformations are small. Taking into account
the above-mentioned tensegrity features, a geometrically non-linear model was adopted to
describe the behaviour of the structure. The model is characterized by large gradients of
displacements and small strain gradients. Due to the presence of the initial prestress in
tensegrity structures, the additional condition of the initial stresses [146] was considered [71,
147-150] As a basis for formulating the tensegrity lattice equations, the partially non-linear
theory of elasticity in Total Lagrangian — TL (Lagrange’s stationary description) approach was
adopted.

3.2.  Model of tensegrity element

Tensegrity systems can be classified as truss structures. However, due to an existing self-
stress state, the truss element is modified taking into account the initial stress oy.

The space finite tensegrity element in an undeformed configuration (initial) °C and
deformed configurations (actual) ‘C and '*2:C (Fig. 3.1) is considered. In the initial
configuration, the cross-sectional area and the length are relatively A, and [,, whereas in the

actual configuration, they are A and [ [148, 151].
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Fig. 3.1. Space finite tensegrity element [151]

The static equilibrium equation in the incremental version is formulated in the actual
configuration at the moment t + At(“t4tC). The tensegrity element is described by the vector

of nodal coordinates and corresponding vector of nodal forces:

t+Atqe — tqe +Aqe’ t+Ath — th +AQe (3.1)
where ‘q°=[qi qz q3 qi qi q3]" and Q°=[Q7 Q3 Q3 Qf QF Q3] are
relatively a vector of nodal coordinates and the vector of nodal forces in the actual configuration
at the moment t(‘C), whereas Aq® = [Aqi Aqi Aqi Aq? Aq3 AqgZ]" is a vector of
displacement increments and AQ® = [AQ] AQ} AQY AQ? AQ2 AQ2]T is a vector of
nodal forces increments.

The variation formulation of the virtual work principle, between two infinitely close times

t and t + At, leads to the incremental static equilibrium equation:
7(a)Aq° =R° +4Q% R®='Q° - F° (3.2)

where K%(q°®) is a tangential stiffness matrix, R® is a residual force vector, and F€ is an inertial
forces vector.

The tangential stiffness matrix:
7(q°) = Kf + K¢ + K5, (q°); K§.(q°) = (Ki; + K3) (3.3)

consists of the linear K7, quasi-linear K¢, and non-linear K%, (q¢) parts. The quasi-linear part,
called the geometry stiffness matrix, consists of two components K¢ = K¢ (A4y0,) + K¢y (N),
where K¢ (4y0,) depends on S = Aya,, Which results from the initial stress o,, and K¢, (N)
depends on the axial force N, which results from external loads. All parts of the stiffness matrix

(3.3) can be expressed as follows:
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Aul
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Due to the fact that the initial configuration is not deformed, the axial force N is not a real
force. It is the component of the second symmetrical Pioli-Kirchhoff stress tensor, whereas the

real force is defined on the basis of the Cauchy tensor and it is:

l
N'=N— (3.7)
lo

3.3.  Model of tensegrity structure

Tensegrity structure considered as n -element space truss (e = 1,2, ..., n), with m degrees
of freedom q(€ R™*1):

q=[91 9 - qu]” (3.8)
The incremental static equilibrium equation for the structure takes the form:
K;(q)Aq = AP +R (3.9

where P(€ R™) is an external load vector, and K;(q) (€ R™™) is a tangent stiffness matrix

of a structure:
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Kr(q) = K, + K(S) + Kgy(N) + Ky (q); Ky (q) = Kyy + Ky (3.10)
where K (S) is a geometry stiffness matrix that depends on self-equilibrated internal forces S:
S=y,S (3.12)

where S is the initial prestress level and yg(€ R™*1) is an eigenvector related to the zero
eigenvalue of the compatibility matrix (see section 4.2.1). Additionally, the tangent stiffness
matrix K;(q) (€ R™™) consists of the geometry stiffness matrix Ky (N) that depends on the
axial forces N and the non-linear displacement stiffness matrix Ky, (q).

The residual force vector R(€ R™*1) in (3.9) results from the aggregation. In equilibrium,
it is equal to zero (R = 0), whereas in a process of iteration, a norm ||R|| is the “distance” from
the equilibrium state. The iterative process converges if ||R|| — O.
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4. Analysis of tensegrity structures

4.1. Introduction

The complete analysis of tensegrity structures is a two-step process. The first step,
qualitative analysis, concerns the identification of the immanent features of the structure, i.e.,
self-stress states and infinitesimal mechanisms. A thorough qualitative analysis allows for
proper classification, and, as a result, a better understanding of the behaviour of the structure.
According to [22, 148], the following characteristics can be distinguished in the tensegrity
structures:

— itisatruss (T),
— there is a self-stress state, that stabilizes the structure (SS),
— there is an infinitesimal mechanism, stiffened by the self-stress state (M),
— the struts extremities are not touching each other, nonetheless, cables create a
continuous net (D),
— compressed struts are surrounded by tensed cables (1),
— tensed cables have no rigidity for compression (C).
The presence of characteristics listed above classified tensegrity structure as:

— ideal tensegrity (T, SS, M, D, I, C),

—  “pure” tensegrity (T, SS, M, |, C),

— structures with tensegrity features of class 1 (T, C, SS, M),

— structures with tensegrity features of class 2 (T, SS, C, | or D).

From an engineering perspective, it is very important that the structures have all six
features. Nonetheless, all tensegrity structures possess benefits related to the ability to control
various parameters, except the structures with tensegrity features of class 2. The second step in
the analysis of tensegrity structures is a quantitative approach. The analysis concerns the impact
of the initial prestress on the behaviour of the structure. The approach can be performed for the
static and dynamic parameters. In the case of the static analysis, the influence of the initial
prestress level on displacements, maximum effort of structure, and stiffness of the structure is
investigated. For the dynamic analysis, the influence of the initial prestress on the natural and
free vibrations is explored. Finally, the dynamic stability analysis examines the influence of the

initial prestress level on the limits of the instability regions of the structure.
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4.2. Qualitative analysis

The qualitative analysis is the first step to understand the unique properties of tensegrity
structures. This assessment is required to determine the immanent features such as infinitesimal
mechanisms and self-stress states which stabilize the mechanisms [54, 96, 152]. The qualitative
analysis can be performed using the existing form-finding methods. The methods often used
include, e.g., the spectral analysis of truss matrices [152], genetic algorithms [153], iteration
method [154], the force density method [63], the dynamic relaxation [77], and the singular value
decomposition (SVD) of the extension matrix B [28, 148, 155].

Two of the mentioned above methods are used in the work. The first method chosen to
perform the evaluation is a spectral analysis of the truss matrices. This method allows not only
the identification of self-stress states and the mechanisms, but also to determine if the
mechanism is infinitesimal or not. As a result, the method determines all existing self-stress
states of the structure and verifies whether any existing state provides stability to the structure,
i.e., introduces the appropriate forces to elements (struts are compressed, cables are tensed) and
ensures the stable equilibrium of the structure. If none of the identified self-stress states
correctly defines the elements in a structure, a superimposed state is necessary. Sometimes, the
solution of this problem (superposition) can be difficult to obtain, then, the second method can
be applied. The genetic algorithm (GA), can be used in cases when the existing self-stress state
is not sufficient, and an appropriate set of forces must be introduced to the structure. The GA

method allows identifying a correct self-stress state for the structure.

4.2.1. Spectral analysis of truss matrices

The identification of characteristic tensegrity features is performed using the spectral
analysis of the truss matrices. The equilibrium equation can be presented in the form of stresses
[28]:

BTo =P 4.1)

where B(€ R™™) is an extension matrix, o(€ R™) is a stress vector, P(€ R™*1) is an

external load vector.

The system of stress equations (4.1) is presented after symmetrization of the equilibrium

equations in the form:

DS = BP (4.2)
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where D = BBT is a compatibility matrix, S(€ R™1) is a longitudinal forces vector (initial
prestress vector).

The spectral analysis of compatibility matrix D(€ R™™) leads to identifying the self-

stress states of the structure:

(D —uDy =0 (4.3)

where u are eigenvalues and y are eigenvectors of the compatibility matrix D.

The eigenvalues can be expressed as:

H={t Uz - Un} (4.4)

The self-stress state can be considered as an eigenvector ys = y;(u; = 0) related to the zero-
eigenvalue appearing in the matrix (4.4).
The spectral analysis of linear stiffness matrix K; (€ R™™) identifies the mechanisms of

the structure:
(K, —yDx=0 (4.5)

where y are eigenvalues and x are eigenvectors of the stiffness matrix K; .

The eigenvalues expressed as:
L={r1 ¥2 -~ Vm} (4.6)

The mechanism can be understood as an eigenvector x;(y; = 0) related to the zero eigenvalue
of the matrix (4.6).

If the self-stress state y;(u; = 0) is defined, the geometric stiffness matrix K. (S)(€
R™™) s built, where S = y;(u; = 0). The full solution of the eigen problem is provided by

the spectral analysis of the stiffness matrix in terms of the effect of self-equilibrated forces S:

where o are eigenvalues and z are eigenvectors of matrix (4.7).

If the eigenvalues of (4.7):
0={01 0z .. Oy} (4.8)
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are positive numbers, the mechanism is infinitesimal and the structure is stable. Zero
eigenvalues are related to finite mechanisms, whereas negative eigenvalues are responsible for
the instability of the structure.

In the case of tensegrity domes, several self-stress states may occur in the structure, but
none of them will stiffen the infinitesimal mechanism. Nonetheless, the superposition of self-

stress states allows introducing the symmetric self-stress state y to reduce the mechanism.

4.2.2. Genetic algorithm

The genetic algorithm is one of the most popular computational algorithms for searching
problems based on the mechanics of natural selection and genetics. For the tensegrity systems,
genetic algorithm is commonly used as form-finding method for regular [153, 156, 157] and
irregular [158-160] structures. Nonetheless, it can also be used as tool for determination the
values of initial prestress for the existing structures [161]. An initial random population of
feasible solutions evolves to create a better solution based on genetic operators, i.e., parent
selection, crossover, or mutation. Then provide the best-selected solution, e.g., set of self-
equilibrated forces in elements.

The first part of the algorithm relies on the selection of appropriate groups of elements.
The selection can be completed automatically or manually. The automatic selection usually
consists of the length selection. The groups of elements are divided according to their length
and type. This method can be less precise for structures with elements of comparable lengths.
The manual selection is more complicated and involves creating groups manually. Due to the
specificity of tensegrity structures, the selection is conducted in a mixed way, i.e., partly
automatically and partly manually. Two types of the element groups (tensed or compressed)
are used. These groups lead to different definitions in the encoding procedure. An automatic
selection was then completed within these groups based on the length selection. The set of all

elements T is divided into the sets of elements with the same length g;:

gi = {el""'ez}' 9 € r (49)

where e; and e, are, respectively, the first and last element of group. For each group of elements

g, the normalized longitudinal force in element S€ is equal to:

x5
¢ =

, (4.10)

Sm ax

where +5; is a value of i-th initial prestress level (“+” for tensed element, “— for compressed

element) and S,,,,, is @ maximum value of the initial prestress.
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The initialization of the population based on the given parameters is required. As in the
first step, it can be completed in two ways, i.e., automatically or manually. For the purpose of
this work, the initial population is prepared automatically by encoding the number of solutions
in the populations and a number of searched genes. Obtaining an optimal result requires
significant computational effort. Genetic operators are used for the natural selection of valuable
solutions. The leading operators in the genetic algorithm are: selection, crossover and mutation.
The selection operator prefers better solutions (chromosomes) to pass its genes to the algorithm
without mutation. The crossover combines the features of the genes of two parents to form two
outcomes. The mutation operator is applied on the chromosome generated from the crossover
operation with the probability of mutation. There are several methods for genetic operators. The
following parameters were proposed:

— parent selection methods: steady state selection (in each generation, a few good
chromosomes are selected to create a new offspring; then, some of the bad (with low
fitness) chromosomes are removed, and the new offspring is placed in their place; the rest
of the population survives to the new generation),

— crossover type: scattered (it randomly selects the gene from one of two parents),

— mutation type: random (the values of some genes change randomly; the number of genes
is specified on the basis of the mutation number of genes or the percentage of genes to
mutate; for each gene, a random value is selected according to the range specified by the
minimum and maximum value),

— number of genes: the number of the groups of elements,

— percentage of genes to mutate: 10.

For chosen operators, the following parameters must be specified, i.e.:

— population size,

— number of generations,

— solutions in the population.

The entire procedure consists of constant reevaluation of provided values, to obtain the best-
fitted solution in the result (Fig. 4.1).

32



4. Analysis of tensegrity structures

GENETIC ALGORITHM

v

Group selection

(manually or automatically)

v

Initialize population

v

Genetic operators:

- Parent selection |
|

- Crossover
- Mutation

v

Fitness evaluation

Results fulfil
the criteria

Fig. 4.1. Genetic algorithm procedure

The most critical part of the genetic algorithm is the fitness function. This function
determines how the obtained solution fits this particular problem. In the case of seeking of the

self-stress state, the fitness function proposed in this paper is equal to:
F = F1 . FZ (411)
where the components F;, F, are described as follows:

F = {0, if the stiffness matrix [K; + K;(S)]is not positive definite}
171,  if the stiffness matrix [K, + K;(S)]is positive definite
(4.12)
1

2" JEN

where EN is the equilibrium of nodes. There is no physical interpretation of the equilibrium of
nodes, which, for the sake of simplicity, was assumed as:

n

EN = ) [(5u)* + (S)" + (5:)°] (4.13)

=1

where S;, Sy, S, are force projections.

33



4. Analysis of tensegrity structures

The feasible solution is obtained by maximizing the fitness function (4.11). The values of
the fitness function should increase with the number of generations. The appropriate solution
has to satisfy the stable equilibrium.

4.3. Quantitative analysis

The quantitative analysis includes static, dynamic, and dynamic stability analyses. The
impact of the initial prestress on static and dynamic parameters is analyzed, as well as the
behaviour of the structure under external load. The analysis starts with an identification of the
maximum (S,,,q4) @and minimum (S,,,;,) levels of initial prestress. The maximum level of initial
prestress (S,,q4,) depends on the maximum effort of the structure (W,,,,,), Where W,,,,,. depend
on the load-bearing capacity (Nz;) and maximum normal force (N,,4,). The assumption is to
not exceed the range W,,,,, < 1. The minimum levels of initial prestress (S,,;,) depends only
on the geometry of the structure and load conditions. The S,,;, level is selected when the
elements in the structure appropriately identified, i.e., cables are tensed and struts are
compressed.

4.3.1. Static analysis

The static analysis of the traditional lattice structures can be performed assuming small
displacements, i.e., a linear geometric model. The quasi-linear model (second-order theory) is
also inadequate. Both approaches do not take into account the stiffening of the structure under
the influence of external load. In tensegrity structures, the load causes displacements in
accordance with the form of the infinitesimal mechanism that induces additional prestress of
the structure — tensile forces generate additional tension in the cables and compression in the
struts. For such regimes, the initial response should not be used to determine the behavior of
the structure. Therefore, the analysis must be carried out with the assumption of the hypothesis
of large displacements (third-order theory).

To illustrate the influence of external loads on the stiffening, two approaches are used. The

applied methods are the quasi-linear approach (second-order theory):
K, +K;(S)]q=P (4.14)
and non-linear approach (third-order theory):

[K, +Kslq =P, Kg=K;(S)+Kgy(N) + Ky, (q) (4.15)
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The analysis concerns the influence of the initial prestress level S (S =y,S) on the
displacements q and normal forces N. Additionally, the following parameters are determined:

— maximum effort of the structure W, ,,:

Winax = max/NRd (4-16)

— stiffness of the structure described by the Global Stiffness Parameter (GSP):

[q(Smin)]TKS(Smin)q(smin) (4.17)

P = T A GOTTKs (SDa ()

where Kg(Spmin) and q(S,,in) are a secant stiffness matrix and a design displacement vector

with a minimum initial prestress level, and K¢(S;) and q(S;) at i-th prestress level.

4.3.2. Dynamic analysis

The ability to control not only the static, but also dynamic parameters is an important
feature of tensegrity structures. The dynamic response of the tensegrity system investigated
using the modal analysis [75, 82, 162, 163]. The impact of the initial prestress level on natural
and free vibrations is analyzed. In case of the vibrations, the time independent external load is
treated as an initial disturbance of the equilibrium state. Taking into account the harmonic
motion q(t) = §sin (2nft), where §(€ R™1) is an amplitude vector, and the non-linear

equation of motion is as follows:
K, +K; — 2rf)*?M]g =0 (4.18)

where M(€ R™™) is a consequent mass matrix, f is a natural (f;(0)) or free (f;(P))

frequency of vibrations.

In the case of natural vibrations (f;(0)), the geometry stiffness matrix depends only on the
self-equilibrium system of longitudinal forces S, consequently K; = K (S). For tensegrity
domes characterized by infinitesimal mechanisms, the omission of the influence of prestress
(S = 0) in (4.18) leads to zero natural frequencies. The number of them is equal to the number
of the infinitesimal mechanisms, and the forms of vibrations correspond to the forms of
mechanisms.

In the case of free vibrations (f;(P)), the geometry stiffness matrix depends additionally

on the longitudinal forces N(€ R™) caused by the external load:
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K = Ks(S) + Kgy(N) (4.19)

In order to calculate the axial forces, a geometrically nonlinear model must be used,
assuming the hypothesis of large displacements, i.e., nonlinear theory of elasticity in terms of

the Total Lagrangian (TL). The following equation need to be solved:
[K, + Kg(S) + Key(N) + Ky, (@)]lq =P (4.20)

where Ky, (@) (€ R™™) is a non-linear displacement stiffness matrix.

4.3.3. Dynamic stability analysis

Dynamic instability analysis (or dynamic instability) leads to the identification of the
resonance frequencies of periodic loads and, consequently, to the determination of parametric
resonance regions (unstable regions). The most common technical application problem is the

analysis of unstable regions at a given constant value P of periodic load:
P(t) = P + P.cos (6t) (4.21)

where P; is an amplitude and 8 is a frequency of the periodic load. The instability regions occur

at the free frequencies £2;, £2; of structures loaded by constant values:

o, R
Tk T YT Tk

k=12,.;i#]j (4.22)
The first case (4.221) represents periodic resonances, and the second one (4.22») — combined
resonances. From the technical point of view, the main instability regions are most important,
i.e., periodic resonances of the first order (k = 1).

The study of structural instability problems leads to nonlinear issues that solved by iterative
or incremental-iterative analysis of large displacement gradients. However, in the case of
dynamic instability analysis, the nature of motion is studied. A quasi-linear approach is
sufficient to determine the conditions under which the motion is of an unsteady nature, with
solutions that increase indefinitely with time. Admittedly, the determination of the magnitude
of the amplitudes of these oscillations can only be obtained from nonlinear equations of
vibration, no less, without knowing the magnitude of the amplitudes, the quasi-linear theory

gives a sufficiently complete and accurate view of the issue of instability.

36



4. Analysis of tensegrity structures

The equation of motion with time-varying coefficients with the inclusion of periodic load

(4.21) takes the following form:

where ¢(t)(€ R™*1) is an accelerator vector.

The boundaries of the stable and unstable regions (Ince-Strutt maps) are determined by the
periodic solutions of the equation of motion (4.23). The problem of dynamic instability analysis
leads to determining the conditions under which equation of motion has non-zero solutions.
The dynamic instability analysis is carried out using the harmonic balance method [148, 164]

that leads to equation:

det{K +(1+1Pt)1( HZM =0 4.24
€ L 5P G 4 = (4.24)

which solution leads to the determination of the main unstable regions A, (S;) at i-th initial

prestress level in the plane of a pulsatility index v and a resonance frequency 7:
, = (4.25)

The influence of the initial prestress level S on the distribution and range of parametric
resonance regions is determined using the nondimensional parameter A. This parameter

measures the changes in areas of unstable regions as the initial prestress level increases:

1= An (Si)

- An (Smin) (4.26)

where A, (Siin) is an area at the minimum initial prestress level.
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5. Geiger domes

5.1. Introduction

The origin of the Geiger dome starts with a patent of a roof structure presented by David
Geiger [115] in 1973. The structure was described as a “curved roof on cable spans” with a
simple design and eventually transformed into a cable-strut dome. Geiger’s research aimed to
combine the principle of tensegrity systems with load-bearing membrane surfaces and achieve
maximum spans with a minimum construction weight. The re-evaluation of Fuller’s pioneering
work led to an innovative stadium roof enclosure that would be as economical as an air-

supported structure (Fig. 5.1).

a)

Fig. 5.1. Design of tensegrity dome by: a) Fuller, b) Geiger [130]

The patent of the Geiger dome (implemented on the roof of the Olympic Hall in Seoul)
[109, 130, 131] consisted of a system of eight flat repeating load-bearing girders that were not
touching at the center (open upper section) and three tension hoops covered with a membrane
(Fig. 5.2a). The load-bearing girders are connected with circumferential cables. After its first
appearance, the Geiger dome was the main subject of many scientific works. The first
modifications of the Geiger dome led to adjusting the cable layout and providing additional
cables. The modification was presented by Kim et al. [165] and relied on the additional
intersecting bracing cables (Fig. 5.2b). In later works, the crossing cables were removed and
only the additional circumferential cables were left [166] (Fig. 5.2¢). The original geometry of
the Geiger dome motivated other scientists to create new shapes (generate new topologies) [76,
80, 167], and present new form-finding [154, 168, 169] and optimization methods [80, 170,
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171]. New cable dome types appeared, based on a Geiger dome patent [123, 172]. As part of
an experimental study, different construction methods [173] and shape-forming processes [85,
174] were presented. The new topology aimed to achieve the desired performance criteria and

enable control of parameters such as stiffness [78] and stability performance [175-177].

b)

k‘lm

4

\

d)

String
Strut

,,,,,

Fig. 5.2. Geometry of the Geiger dome: a) original patent implemented in Seoul Arena [130], b)
braced dome [165], d) modified dome [125] c¢) modified dome [166]

A stable configuration of a cable-strut dome structure consists of an appropriate
geometry solution and state of initial prestress that provides stability to elements. In the case of
a “pure tensegrity” structure, the initial prestress occurs naturally, stiffens the structure, and
reduces infinitesimal mechanisms. In the case of the original Geiger dome, not all existing self-
stress states meets those criteria. For the domes with additional modifications, the self-stress
state must be accurately derived using the appropriate methods [83, 178-183]. Introducing an
appropriate self-stress state allows for further analysis of the dome. Due to a non-conventional
shape, the investigation of the structure’s response to different load conditions is significant,
including simple load conditions, like a self-weight [126], and also more complex ones, for
example, non-uniform snow load [184]. That is why the failure analysis and behaviour of the

domes must be thoroughly analyzed [185-188].
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The static analysis of tensegrity domes includes the influence of the initial prestress level
on the structure’s response. The literature review shows works that study the influence of the
self-stress state on the displacements [76, 78], effort, and stiffness of the structure [155]. The
dynamic analysis of the Geiger domes, on the other hand, is a subject that is still understudied.
The papers that include dynamic analysis of the Geiger dome focused mostly on the natural
frequencies analysis [55, 56, 148], and only one type of dome was always concerned. More
widely the dynamic analysis was presented in [125, 148, 189, 190]. The papers, the subject of
which was the complete dynamic analysis of the Geiger dome also appeared [124, 191].

In this work, static and dynamic analysis is performed on the Geiger domes. The
differences are in the geometry of a load-bearing girder and the different numbers of girders in
the dome structure are presented. The upper section of girder is presented in two variants, i.e.,
close upper section type A and open upper section type B. The domes presented with a regular
cable layout (according to Geiger patent) [115] — regular Geiger domes, and with additional
circumferential cables (according to [166]) — modified Geiger domes. The domes with different
number of girders are analyzed. The names of analyzed domes are acronyms: R — regular dome,
M - modified dome, G — Geiger dome, the number — the number of load-bearing girders, and

letter A or B — girders type, e.g., “RG 6A” is the regular Geiger dome with 6 girders type A.

5.2. Geometrical design

The geometry of the Geiger dome consists of uniformly distributed flat load-bearing
girders. Two geometrical designs are proposed. First, own solutions are presented (section
5.2.1). The proposed designs are the main subject of further analysis. Next, due to the Geiger
dome’s popularity, the solutions known from the literature are considered (section 5.2.2).

5.2.1. Proposed design solutions

The proposed design solutions contain small-scale domes. The load-bearing girder consists
of cables (elements: 1, 2, 3, 4, 5, 6) and struts (elements: S1, S2, S3) located in the same plane
(Fig. 5.3). The flat load-bearing girders are connected into a spatial structure with permanent
circumferential cables (elements: C1, C2, C3, C4) and by additional cables (marked in blue),
that are optional in the structure (elements: C5, C6). Fig. 5.3 presents the geometry of a regular
flat girder — type A (Fig. 5.3a) and modified (with cables C5, C6) — type B (Fig. 5.3b). The
node coordinates of a load-bearing girder are presented in Table 5.1. The diameter of 12 m and
the height of 3.25 m of all domes were adopted. Domes are supported in every external node of
the lowest section of the girder. The geometry of domes consisting of six load-bearing girders
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is presented in Fig. 5.4. In this work, in addition to domes with six load-bearing girders, the
domes with 8 (Fig. 5.5), 10 (Fig. 5.6) and 12 (Fig. 5.7) load-bearing girders are considered.

b)
0 1 0 5
0 3 s3 @
0.5 o) ,;}r{\(,
-1.15F C1 © 6 -1.15 Cl/@ 6
Fig. 5.3. Load-bearing girder of the Geiger dome: a) type A, b) type B
Table 5.1. Node coordinates [m] of the load-bearing girders of the Geiger dome
N f
Coordinate Type of umber of nodes
girder | 1 | 2 3 | 4 5 | 6 | 7
A 0.0
X 2.0 4.0 6.0
B 0.5
z AandB| 21 15 1.85 0.45 1.15 -1.15 0.0
a) , b)
. | ]|\
0) | d)
A | A
I il ] I
I , ] TR ] X
| l I ‘ I : a A

Fig. 5.4. Geiger dome: a) RG 6A, b) MG 6A, c) RG 6B, d) MG 6B
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S - Pl - (1

Fig. 5.5. Geiger dome: a) RG 8A, b) MG 8A, ¢) RG 8B, d) MG 8B

a) ,‘ / b) \ , c) | d)
N = . N\

N pht<] ‘

lllll' 1 |

Fig. 5.6. Geiger dome: a) RG 10A, b) MG 10A, c) RG 10B, d) MG 10B

5 n 0 d)
'[_|ll‘l|‘ i |r1‘ v
'|'|HH|’ | \I|[||H|‘ | m

|| A [ PN

Fig. 5.7. Geiger dome: a) RG 12A, b) MG 12A, c) RG 12B, d) MG 12B

5.2.2. Solutions from the literature

A large group of scientists is investigating the Geiger dome. Each work contains different
solutions for the girder geometry and structural system of a dome. Three examples of domes
with similar geometry, i.e., 12 load-bearing girders, regular cable layout, type B (RG 12B) are
shown. First, the dome presented by Jiang et al. [178] (Fig. 5.8) is considered. The dome is
approximated to a large-span structure with a width of 100 m and a height of 8.5 m. The dome
is supported in every external node of the lowest section. The node coordinates for a load-
bearing girder are presented in Table 5.2.
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b)

A A

Fig. 5.8. Geiger dome by Jiang et al. [178]: a) geometry of a girder, b) 3D view, c) top view

Table 5.2. Node coordinates [m] of the load-bearing girder of the Geiger dome by [178]

No. of 1 2 3 4 5 6 7
node
X 5 50
Z 85 3.3 6.5 0.7 35 5.4 0.0

The second example is dome presented by Yuan et al. [180] (Fig. 5.9). The dome is 130 m

wide and 8 m high. The structure is supported in every external node of the load-bearing girder.

a)
38000
oSZ 2 6.667
4000 |13 5 4.000
- 4% 8 0.000
10 1333
] s 7
L 8000
e ﬁ
[ﬂ 20 20 0 {
| 1 |

b)

Fig. 5.9. Geiger dome by Yuan et al. [180]: a) geometry of a girder, b) 3D view
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The third example is presented by Malerba et al. [168] (Fig. 5.10) has similar load-bearing
girder to the one provided in [180]. The dome is also 130 m high and 8 m wide (measuring from
the level of supports).

3)
13 5'090 6.667
4000 11 - 5. 4000
A 11 -1.333 * -l B 20
| 7
12 -8.000_ 9 (]
5 20 20 20
b) c)
%65' 2 J, [l,r ,1]_:1}, ] !

X 60
40

S )
-60 x[m]

80 0

x [m]

Fig. 5.10. Geiger dome by Malerba et al. [168]: a) geometry of a girder, b) 3D view, c) top view

5.3. Qualitative analysis

The qualitative analysis of the Geiger dome relies on the identification of existing
infinitesimal mechanisms and self-stress states. These characteristics are not dependent on the
external loads, the cross-section of the elements, or the physical properties of a structure. Only
the geometry of a dome is essential. The identification of self-equilibrium forces can be
performed using several methods. In the case of regular domes, forces are calculated directly
from the node equilibrium (section 5.3.1). For modified domes, different methods must be

considered, e.g., spectral analysis (section 5.3.2) genetic algorithm, and others (section 5.3.3).

5.3.1. Exact solution

In the case of simple and statically determinate tensegrity structures, the equations for the
determination of the values of self-equilibrium forces (self-stress state) can be derived from the
node equilibrium. In the case of Geiger domes, only the regular domes (RG) are suitable to
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derive the formulas. The formulas on self-equilibrated forces (Table 5.3) depend on the angle
of inclination of cables of the girder — a (Fig. 5.11a, b), the angle between perimeter cables —
2p (Fig. 5.11c, d), and the number of load-bearing girders ng. With these ready-to-use formulas
(Table 5.3), the self-stress state can be easily derived for each Geiger dome of a regular type
(RG). It allows proceeding with the next steps of the analysis and reduces the calculation time.

a) b)
lsll L ag CIISSI.I’ 1 % Q3 :
'\2;2 % 2 3 35 ‘C2‘1‘212 % ISZ (‘hﬁ
cal 5 C4 s
L as r,?] a 4 " “57
] N O 7
) 07 C6 6 %70
, s ~O 03 4 ; 9
g 8
cs| C8
| ® ®
c) d)

Fig. 5.11. View on geometry of the regular Geiger dome: a) load-bearing girder type A, b) load-
bearing girder type B, c) top view on type A dome, d) top view on type B dome

Table 5.3. Formulas on self-equilibrium forces (self-stress state) for the regular Geiger dome

Type A Type B
N; = constant
sin(a;_
N; = NHM; i=2468..
sin(«a;)
N;:_,cos(aj_, )+ N;_icos(a;_
Nj=12 (12) Jj—1 (]1);j=3,5,7...

COS(CZ]')
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Table 5.3. Formulas on self-equilibrium forces (self-stress state) for the regular Geiger dome -

Continued
Type A Type B
Ngj = 0.5N, CCZSS(&,")); k=468..
Ny = 0.5N; %
N¢z = 0.5N; CC(;SS((ZZ))

Ng; = ngN, sin(a;)

Ng; = N, sin(ay)

Ng, = Ny sin(ay,); r=234..

5.3.2. Spectral analysis of truss matrices

The qualitative analysis of regular and modified Geiger dome types A and B is performed

using the spectral analysis of the linear stiffness matrix and compatibility matrix (see section

4.2.1). The consideration involves the identification of self-stress states and infinitesimal

mechanisms of a structure. The summarized results for considered domes, i.e., RG ngA, MG

ngA, RG ngB, MG ngB, where ng = {6,8,10,12} number of load-bearing girders, are

contained in Table 5.4.

Table 5.4. Results of the qualitative analysis of Geiger domes

bearing girgers | NO:0F | Noof | nl | No.of Noof | e

(ng) nodes | d.o.f (n) struts (ns) | mechanisms (nm) states
Type A

32 78 61 (73) 13 18 (8) 1(3)

42 102 81 (97) 17 22 (8) 1(3)

10 52 126 101 (121) 21 26 (8) 1(3)

12 62 150 121 (145) 25 30 (8) 1(3)
Type B

42 108 78 (90) 18 31 (21) 1(3)

56 144 104 (120) 24 41 (27) 1(3)

10 70 180 130 (150) 30 51 (33) 1(3)

12 84 216 156 (180) 36 61 (39) 1(3)

(.) —the results for the modified domes (MG)
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The modification of cable layout leads to a reduction of the number of infinitesimal
mechanisms, at the same time increasing the number of self-stress states. In the case of the
regular Geiger dome (RG), the number of infinitesimal mechanisms (nm) depends on the
number of bearing girders, i.e., the number of struts (ns). The dependency is defined as follows:

type A: nm =ns + 5;
(5.1)
type B: nm =0.5(n—ns) +1

The number of mechanisms of a modified dome type A is not depending on the number of
girders, eight mechanisms were identified for each dome. On the other hand, the number of

mechanisms of modified dome type B (MG ngB) can be calculated as:
nm =ns + 3 (5.2)

The number of self-stress states is not depending on the number of load-bearing girders.
Regular domes (RG) are featured by one self-stress state (Table 5.5). The self-stress state
obtained from the spectral analysis is the same as one obtained through the formulas on self-
equilibrated forces (Table 5.3). In turn, the modified domes (MG) are featured by three self-
stress states. In the case of the modified Geiger domes (MG), superimposed self-stress states
(Table 5.6) were used for further analysis. The values of obtained self-stress states were
normalized in the way that force in the longest strut is equal to -1. The form of the infinitesimal

mechanism of Geiger domes indicates a tendency to tilt (Fig. 5.12).

Table 5.5. Values of self-stress state yg of the regular Geiger domes (RG)

Type A Type B

el. Vs el. | ys |el| ys |[el| ys |el| ys | el Vs
-0.380© 1.739® 1.739®
-0.507® 2.2720 2.2720
s1 063a0 | 1 | 0511 | CL | Jo i [ S1 | -0085| 1 | 0514 | CL | S i
0.76102 3.3592 3.35900
0.869® 0.869®
1.136® 1.361®
S2 -0.304 2 0.368 C2 14070 S2 -0.304 2 0.372 C2 1.40700
1.6791 1.679¢2
0.362©
o3 _ 3 ] 3 0.473®
1000 | , | 0921 S3 | -1.000 | , | 0.921 | C3 | Jiotu
0.699112
0.507®
5 5 0.663®
> | 2006 6 | 2006 | C4 | yeojo
0.97912

© dome with 6 girders; ® dome with 8 girders; “® dome with 10 girders; *? dome with 12 girders
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Table 5.6. Values of self-stress state y of the modified Geiger domes (MG)

Type A Type B
el. Vs el. | ys |el | ys el | ys el | ys | el Ys
20.2280 17390 1.739%
-0.304® 2.272® 2.2729
S1 -0.37949) 1 0.306 | C1 28149 S1 | -0.051 1 0.308 C1 2 81400
-0.45502) 3.35912 3.350%
0.756© 0.756®
0.988®) 0.988®
S2 | 0265 | 2 | 0220 | C2 | oo | S2 | 0265 | 2 | 0223 | C2 | [ono
1.461(12) 1.461(12)
0.217®
3 3 0.283®)
s3 | 1000 | , | 0801 S3 | -1.000 | , | 0801 | C3 | ,iiciug
0.419¢2
0.303®
5 5 0.396®)
> | 2006 6 | 2006 | C4 1 549100
0.58612)
0.2360 0.236®
0.308® 0.308®
C5 | 038100 > | 038100
0. 455(12) 0.455(12)
0.227© 0.227®
0.297® 0.297®
C6 | 36300 €0 1 0368w
043912 0.439¢2

© dome with 6 girders; ® dome with 8 girders; “® dome with 10 girders; *? dome with 12 girders

b)

Fig. 5.12. Form of first infinitesimal mechanism of MG 6A dome: a) 3D view, b) top view, ¢) side
view
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The qualitative analysis of Geiger domes determined following tensegrity features, i.e., the
dome is a truss (T), with a continuous net of tensed cables (C), and discontinues net of
compressed struts (D) surrounded by cables, and it features the existence of the self-stress state
(SS) and infinitesimal mechanism (M). Nonetheless, not every existing self-stress state stiffens
the mechanism and a superimposed self-stress state must be introduced to the structure.
Therefore, the analyzed Geiger domes are classified as structures with tensegrity features of
class 1.

5.3.3. Genetic algorithm

The qualitative analysis of the regular type B Geiger dome (RG 12B) (Fig. 5.8) was also
performed using the genetic algorithm. The procedure described in section 4.2.2 was
implemented to calculate the values of self-equilibrated forces. In the case of the genetic
algorithm, the calculations were performed in two series to obtain more accurate results. The
algorithms parameters were selected as follows:

— population size: 1000 (Series 1), 1100 (Series 2),

— number of generations: 100 (Series 1), 150 (Series 2),

— solutions in the population: 200 (Series 1), 250 (Series 2),

— number of genes: equals the number of groups of elements.

The results obtained by the genetic algorithm were compared to one obtained by exact
methods in paper [182]. The effectiveness of qualitative methods presented in sections 5.3.1
and 5.3.2, has been assessed by comparison with the method used by Jiang et al. [178], i.e.,
catenary equation-based component force balancing method. Summarized results are provided
in Table 5.7. The original values from the paper (Original) were normalized (Norm.) in a way

that the value in the longest strut is equal to -1 for a comparison.

Table 5.7. Values of self-stress state of the Geiger dome obtained by different methods

Groups Jiang et al. [178] Present Study
of o Relative| Exact | GA |Relative] GA |Relative
I Original | Norm. ) ) )
Elements Error [Solution|Series 1| Error |Series2| Error
1 431.514 1.274 1% 1.284 | 1.315 2% 1.488 | 16%
2 269.694 0.796 2% 0.814 | 1.163 | 43% | 0.736 | 10%
3 701.205 2.069 2% 2109 | 2486 | 18% | 2.235 6%
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Table 5.7. Values of self-stress state of the Geiger dome obtained by different methods - Continued

Groups Jiang et al. [178] Present Study
of o Relative] Exact | GA |Relative| GA |Relative

Elements| Orioinal | Norm. Error [Solution|Series 1| Error |Series2| Error
4 751.292 2.217 2% 2.255 | 2.336 4% 2.240 1%
5 1452.497 4.287 3% 4401 | 4.826 10% 4511 2%
6 941.433 2.778 6% 2.952 | 2.952 0% 2.940 0%
C1l 1818.387 5.367 0% 5.366 | 5.359 0% 5.329 1%
C2 1451.127 4.283 0% 4282 | 4.416 3% 4.273 0%
C3 833.467 2.459 0% 2459 | 2527 3% 2.848 16%
C4 520.917 1.537 0% 1537 | 2.213 44% 1.372 11%
S1 —57.534 —0.169 0% -0.169 | —0.201 | 19% | -0.197 | 17%
S2 —140.228 | —0.414 0% —0.414 | —0.524 | 27% | —0.402 3%
S3 —338.833 | —1.000 0% —1.000 | —1.000 0% —1.000 0%

The method provided in [178] gives the 0% error in groups of circumferential cables (Ci)
and struts (Si), whereas values for girder cables (i) are subjected to errors up to 6%. In the case
of the genetic algorithm, the accuracy of the obtained results is highly dependent on the
parameters of the algorithm, higher convergence could be achieved by increasing these
parameters. Obtained values are considered satisfactory, and meet the requirement of stable

equilibrium (the equilibrium of nodes is close to zero).

5.4. Quantitative analysis

The quantitative assessment is the second step of the analysis of tensegrity structures. It is
a parametric analysis leading to the determination of the impact of the initial prestress level on
the behaviour of the structure under external load. Unlike the qualitative analysis, the results of

the quantitative analysis depend on the material and the cross-sections of the elements. It is
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assumed that cables are made of steel S460N. The “Type A” cables with Young modulus 210
GPa [192] are used. The struts are made of hot-finished circular hollow sections (steel S355J2)
with Young modulus 210 GPa. The density of steel is equal p = 7860 kg/m3.

The quantitative assessment is carried out in terms of static, dynamic, and dynamic stability
analysis. All cases concern the small-scale domes. Static analysis is provided for small-scale
domes consisted of six load-bearing girders (section 5.2.1). The qualitative analysis of the
small-scale domes was performed in section 5.3.2. Dynamic analysis is provided for domes
consisting of different numbers of load-bearing girders, i.e., 6, 8, 10, and 12 girders are
considered. In turn, dynamic stability analysis is provided for small-scale Geiger domes
considered in the static analysis.

In the case of small-scale domes, four variants of geometry are considered, i.e., dome types
RG 6A, RG 6B, MG 6A, and MG 6B (Fig. 5.3). The cables with the diameter ¢ = 20 mm and
load-bearing capacity Nz; = 110.2 kN are taken into account. For struts, there are rods with a
diameter ¢ = 76.1 mm and thickness t = 2.9 mm, with lengths 0.6 m, 1.4 m, and 2.3 m, and
load-bearing capacity Ny; = 224.3 kN, 170.5 kN, and 107.1 kN respectively. The external load
is applied in different positions, i.e., in P®, where i = 1,2,3 (Fig. 5.13). Two values of load
are considered, i.e., P® = {1 kN, 5 kN}. The analysis includes time-independent and periodic
type of external load. The minimum prestress level is highly dependent on the load value and
position of load application (Table 5.8). For some load positions, a higher prestress level is
required in comparison to others. In turn, the value of the maximum prestress level (S,.4x)
depends on the load-bearing capacity of the most stressed elements. For all structures, it was
assumed that S5, = 50 KN. The maximum effort of cables is W4, c = 0.95, and the

maximum effort of struts is W4, s = 0.48.

a) b)

N

A ’ A
Fig. 5.13. Position of the external load on the load-bearing girder: a) type A, b) type B
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Table 5.8. S,,,;, values of the Geiger domes under external load

Load value Load value
P =1kN P =5KkN P =1kN P =5kN
Load position Load position Load position Load position
Al PO | p@& | pO® | PO | p@ | P | B PO | P@ | pG | pO | p@ | pB3
Smin [kN] Smin [kN] Smin [kN] Smin [kN]

R 2 5 5 8 22 24 | R 2 2 2 2 2 2

M 3 8 12 11 34 36 |M| 14 10 2 41 26 2

A —type A, B —type B, R —regular dome, M — modified dome

Additionally, to check the possibility of relating results to the real-scale objects, static
analysis is performed on the realistic-scale Geiger dome. The realistic-scale dome geometry
was obtained by the rescaling of the small-scale dome, and resulted in the same self-stress
values (Table 5.6).

In the charts the following symbols are used: Il — second-order theory, Il — third-order
theory, 1 — external load equal to 1 kN, 5 — external load equal to 5 kN, s — struts, ¢ — cables, R
— regular dome, M — modified dome, A — type A, B — type B, G1 — realistic dome with
symmetrical load, G2 — realistic dome with asymmetrical load. For example, the caption “RA
1(IT)” stands for the regular dome type A loaded with force 1 kN analyzed using the second-
order theory, and “G1 (II)” stands for the realistic dome with symmetrical load analyzed using

the second-order theory.
5.4.1. Static analysis of small-scale domes

Static analysis of Geiger domes concerns the impact of the initial prestress level on the
behaviour of the structure under time-independent external load. In particular, the influence of
initial prestress level S on the displacements (q,, q,), maximum effort of structure W, ,,, and
stiffness parameter GSP is analyzed. The displacements are measured for the node located on
the girder opposite to the location of the loaded node (node d) (Fig. 5.13). The examples are in
order to compare the static response of different dome types. Firstly, regular and modified
domes type A are compared (Example 1), then regular domes type A and B (Example 2), and,

at the end, regular and modified domes type B (Example 3) are considered.
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Example 1

Subject of the comparison: RG 6A (Fig. 5.14a) and MG 6A (Fig. 5.14b) domes — behaviour
under the symmetrical load

Aim of the comparison: Whether the modification of the structure matter in the case of

symmetrical load?

a) RG 6A b) MG 6A
P=1kN - S, = 2kN P=1kN - S, = 3kN
P=5kN - S, = 8kN P=5kN - Sy, = 11kN

™ A

JENCER =g
{ v

Fig. 5.14. External load application in the case of position P( for: a) RG 6A, b) MG 6A

In order to compare the influence of the initial prestress on the static parameters of the RG
6A and MG 6A domes (Fig. 5.14), firstly the impact of the initial prestress on the plane
displacement g, (Fig. 5.15) and vertical displacement g, (Fig. 5.16) is considered. In the case
of presented type of load, the influence of the initial prestress level on the displacements is
absent. The domes are insensitive to the initial prestress. The results obtained from the second-
order theory and third-order theory are fully convergent. The increasing of the external load
results in a small increasing of displacements. The influence of the initial prestress level on the
maximum effort of elements W, (Fig. 5.17) is almost linear, small non-linearity can be
noticed at low levels of the prestress. The effort of the elements linearly increases with an
increasing of the initial prestress. The GSP parameter, on the other hand, stays constant at value

1, and does not depend neither on the initial prestress level nor external load value (Fig. 5.18).

53



5. Geiger domes
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Fig. 5.15. Impact of the initial prestress S on the displacement q,. in the case of the load position
PO for: a) RG 6A, b) MG 6A
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Fig. 5.16. Impact of the initial prestress S on the displacement g, in the case of the load position
P for: a) RG 6A, b) MG 6A
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a) b)
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Fig. 5.17. Impact of the initial prestress S on the maximum effort of structure W,,,,, in the case of
the load position P(Y for: a) RG 6A, b) MG 6A
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Fig. 5.18. Impact of the initial prestress S on the GSP parameter in the case of the load position P(V
for: a) RG 6A, b) MG 6A

Conclusion of the comparison: The behaviour of regular and modified domes type A under the

symmetrical load is very similar. The main differences remain only in the values of the
minimum prestress. In the presented example, the direction of the applied load is inconsistent
with the direction of the infinitesimal mechanisms of the structures, thus not affecting the
structure. The additional circumferential cables do not contribute to the static response of the

dome.
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Example 2

Subject of the comparison: RG 6B (Fig. 5.19a) and MG 6B (Fig. 5.19b) domes — behaviour

under asymmetrical load

Aim of the comparison: Whether the modification of the structure matter in the case of

asymmetrical load?

a) RG 6B b) MG 6B
P=1kN—>Smin=2kN P=1kN - S, = 2kN
—5kN—>Smm—2kN P=5kN - S, = 2kN

AN A
h a1

A A

A
L/

1%
/

Fig. 5.19. External load application in the case of position P® for: a) RG 6B, b) MG 6B

The second example focuses on the differences in the behaviour of RG 6B and MG 6B
domes. The influence of the initial prestress on static parameters in the case of load position
P®) is considered. The impact of initial prestress on the displacement g, (Fig. 5.20) and g,
(Fig. 5.21) is similar for both structures. The discrepancy in results obtained from the second-
and third-order theory is at the low levels of initial prestress. The nonlinearity increases with an
increase of the external load. In the case of the maximum effort of structure W,,,,, (Fig. 5.22),
the impact of the initial prestress is nonlinear. The impact on the GSP parameter (Fig. 5.23) is
considered as linear in the case of low external load, and nonlinearity appears after introducing
higher load. Additionally, the increase of the external load results in the decrease of the stiffness
of the structure. In the case of initial prestress level S = 50 kN, the decrease is around 60% for

both domes. The domes characterized by the same level of stiffness.
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Fig. 5.20. Impact of the initial prestress S on the displacement q,. in the case of the load position
P® for: a) RG 6B, b) MG 6B
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Fig. 5.21. Impact of the initial prestress S on the displacement g in the case of the load position
P® for: a) RG 6B, b) MG 6B
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a) b)
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Fig. 5.22. Impact of the initial prestress S on the maximum effort of structure W,,,,, in the case of
the load position P for: a) RG 6B, b) MG 6B
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Fig. 5.23. Impact of the initial prestress S on the GSP parameter in the case of the load position P®)
for: a) RG 6B, b) MG 6B

Conclusion of the comparison: The analysis of regular and modified Geiger domes aims to

evaluate the influence of the additional circumferential cables on the static response of the
structure. Nonetheless, static analysis showed similar behaviour of considered domes. The
impact of the initial prestress on static parameters is the same regardless of the presence of
additional cables. The discrepancy in the values obtained from the second- and third-order
theory are significant only at the low levels of initial prestress (from S,,,;, to S = 20 kN). Both
domes characterized by the same minimum prestress level. In conclusion, the RG 6B dome is
a better design solution and the dome modification is not affecting the static response of the

structure.
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Example 3

Subject of the comparison: RG 6A (Fig. 5.24a) and RG 6B (Fig. 5.24b) domes — behaviour

under asymmetrical load

Aim of the comparison: Whether the upper section type matter in the case of asymmetrical load?

a) RG 6A b) RG 6B
P=1kN - S, =5kN P=1kN - S, = 2kN

P=5kN - Sy = 22kN P=5kN - S, = 2kN

| ,I«["r"]ﬁfl . l [Ill;r,ﬁHl
(= SO

Fig. 5.24. External load application in the case of position P() for: a) RG 6A, b) RG 6B

The third example focuses on the differences in the behaviour of RG 6A and RG 6B domes.
The influence of the initial prestress level on static parameters in the case of load position P(®
is considered (Fig. 5.24). In contrast to Example 1, the impact of the initial prestress on the
plane displacement g, (Fig. 5.25) and vertical displacement q, (Fig. 5.26) can be observed.
There are also differences in the results obtained from second-order theory (I1) and third-order
theory (1) in the case of the RG 6B dome. The biggest discrepancy is at the low initial prestress
levels, which increase with an increase in external load. Nonetheless, comparing the
displacements of RG 6A and RG 6B domes for the same prestress level (Table 5.9), the

differences between theories are similar.

Table 5.9. Displacement g,, for RG 6A and RG 6B domes

P=1kN P =5kN

Minimum possible initial prestress level for both domes
S=5kN S =22kN
RG 6A RG 6B RG 6A RG 6B

Displacement g, [mm]

Second-order theory (1) -18.53 -13.37 -21.04 -15.19
Third-order theory (I11) -15.43 -10.39 -19.54 -13.63
RE* 20.09% 28.68% 7.68% 11.45%

RE* — relative error: [(q, (II1) — q,(11)/q, (II1)) - 100%]
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Fig. 5.25. Impact of the initial prestress S on the displacement q,. in the case of the load position
P@ for: a) RG 6A, b) RG 6B
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Fig. 5.26. Impact of the initial prestress S on the displacement g, in the case of the load position
P® for: a) RG 6A, b) RG 6B

Comparing the maximum effort of structure W,,,,,, for the RG 6A dome the effort is not
dependent on the external load and increases linearly (Fig. 5.27a). In turn, for the RG 6B dome
the situation is opposite, the effort of the structure depends on the external load, and at the low
levels of prestress, the nonlinear behaviour can be observed (Fig. 5.27b).

The GSP parameter is highly dependent on the value of the external load (Fig. 5.28b). The
increase from 1kN to 5kN resulted in a decrease in the stiffness of the structure by up to 75%
for the RG 6A dome, and up to 60% for the RG 6B dome (in the case of the initial prestress
level S = 50 kN). Comparing stiffness increase from S = 5 kN to § = 50 kN (for P = 1 kN),
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the increase is up to 8-fold for the RG 6A dome and 11-fold for the RG 6B dome. In the case
of P =5KkN (range from § = 22 kN to S = 50 kN) the increase is 2-fold and almost 5-fold

respectively.

a) b)
—#—RA 1(c) - B RA1(s) —#—RB 1(c) - B RB1(s)
—a—RA5(c) -m- RA5(s) —=—RB 5(c) - m- RB5(5)
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0.8 0.8
T 06 T 06
3 3
£ £
= 04 = 04
0.2 0.2 1
0.0 t t 0.0 t t t t
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
S [KN] S [kN]

Fig. 5.27. Impact of the initial prestress S on the maximum effort of structure W, in the case of
the load position P(® for: a) RG 6A, b) RG 6B
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Fig. 5.28. Impact of the initial prestress S on the GSP parameter in the case of the load position P(®
for: a) RG 6A, b) RG 6B

Conclusion of the comparison: The behaviour of domes RG 6A and RG 6B is different due to

different prestress conditions. In the case of the RG 6B dome, the external load is not affecting
the minimum prestress level. A low prestress level is sufficient to obtain the appropriate

distribution of forces in the elements. In turn, for the RG 6A dome, the load value affects the
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minimum prestress level, the appropriate distribution of forces can be obtained only by
introducing higher prestress. The RG 6A dome minimum prestress level is 150% and 1000%
(for 1kN and 5kN load respectively) of the minimum prestress level of the RG 6B dome. The
RG 6B dome can be considered as better solution. The increased number of elements (different
type of upper section) results in the higher impact of the initial prestress level and easier control

of the dome parameters.
5.4.2. Static analysis of the realistic-scale dome

In the case of realistic-scale dome, one variant of geometry is chosen. The modified Geiger
dome, with upper section (type A), and six load-bearing girders is considered (MG 6A) (Fig.
5.4d). The dome is 20 m wide and 3.5 m high (measuring from the level of support) (Fig. 5.29).
The structure consists of 73 elements, i.e., 13 struts and 60 cables. The struts are designed as
tubes CHS 127x5.6. Due to the different lengths, the struts were divided into three groups, i.e.,
six struts of 3.83 m length, six struts of 2.33 m length, and one strut of 1 m length, with the
maximum load-bearing capacity of Np; = 418 kN, 640 kN, and 741 kN, respectively. In turn,
the cables are assumed to be made of “D42” with a maximum load-bearing capacity of Nzg =
504.4 kN. Two variants of load are considered. In the first case, the load was applied
symmetrically (Fig. 5.30a) (G1), whereas in the second — asymmetrically (Fig. 5.30b) (G2). In
both cases, the vertical (z-direction) forces (P,) and plane ones (P, ) are assumed to be the

nominal value of 1 kN (P, = P, = 0.707 kN). The minimum prestress level for the dome is

equal to S,,;,= 21 kN, whereas the maximum prestress level was assumed as S,,,,, = 190 kN.

The maximum effort of structure is W,,,, =0.91.

3.50

3.09
2.50

1.92
0.75 D

10
-1.92+ @

Fig. 5.29. Load-bearing girder of the realistic-scale Geiger dome
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Fig. 5.30. Scheme of the applied load of the realistic-scale Geiger dome: a) symmetrical (G1), b)
asymmetrical (G2)

The static analysis of the realistic-scale Geiger dome concerns the impact of the initial
prestress level S on the displacements g, and q,, of the top node 1 (Fig. 5.29), maximum effort
of structure W, ., and stiffness parameter GSP.

Firstly, the displacements are presented (Fig. 5.31). For the symmetrical load (G1), the
displacements g, and g, depend on the initial prestress level and additionally on the load
variant. The displacements decrease as the initial prestress increases. However, in the case of
the asymmetrical load (G2), the displacements are higher than in the case of a symmetrical load
(G1). This type of load causes displacements consistent with the infinitesimal mechanisms. The
conducted analyses show that the influence of nonlinearity is significant at low values of initial
prestress. As prestressing forces increase, the differences between the calculations performed
according to the second and third-order theory become smaller. However, in the case of the

assumed low load values, results are similar.
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Fig. 5.31. Impact of initial prestress S on the displacement: a) q,, b) q,,
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Next, the maximum effort of the structure (W,,,,) and GSP parameter (Fig. 5.32b) is
calculated (Fig. 5.32a). Small nonlinearity can be noticed at the low initial prestress levels, due
to a low external load. Nonetheless, the load type is not affecting considered parameters.
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[

P

Wmax [‘]
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Fig. 5.32. Impact of initial prestress S on the: a) maximum effort of structure Wy, ;,, b) GSP
parameter

The external load nature (symmetrical or asymmetrical) has a great impact on the
displacements of the structure. The asymmetrical load (G2) is consistent with the infinitesimal
mechanism and causes bigger displacements than in the case of symmetrical load (G1). In turn,
parameters such as maximum effort of structure or stiffness are not dependent on the load

nature.
5.4.3. Dynamic analysis

The dynamic analysis of the Geiger domes includes the analysis of both natural and free
frequencies of the structure. The assessment divided onto three parts that contain natural
frequencies that correspond to the infinitesimal mechanisms (Example 1), additional natural

frequencies that depend on the initial prestress (Example 2), and free frequencies (Example 3).

Example 1

Subject of the comparison: RG ngA, RG ngB, MG ngA, MG ngB domes (ng = {6,8,10,12})

- natural frequencies correspond to the infinitesimal mechanisms

Aim of the comparison: (1) How does the initial prestress level impact the natural frequencies

corresponding to the infinitesimal mechanisms? (2) Whether the number of load-bearing girders

impacts the natural frequencies corresponding to the infinitesimal mechanisms? (3) How does
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the design solution (regular or modified, open or closed upper section) impact the dome

behaviour?

The dynamic analysis concerns the small-scale Geiger domes provided in section 5.4.1.
The consideration includes domes with a different number of load-bearing girders (ng), i.e.,
ng = {6,8,10,12}. It is commonly known that, in the case of tensegrity structures, the number
of natural frequencies depending on the self-stress state is equal to a number of infinitesimal
mechanisms (nm). The number of existing infinitesimal mechanisms of small-scale domes was
determined in the section 5.3.2. Fig. 5.33 presents the influence of the initial prestress level on
the first (1) and last (fnm) natural frequency of considered domes. A zero prestress (S = 0)
results in zero frequencies. However, after increasing the level of initial prestress, frequencies
increase nonlinearly. The level of the first natural frequency f1 is similar for each considered
dome f1 = 5.1Hz <+ 6.5 Hz for S,,,,. The smallest discrepancy between the first and last
natural frequency at the maximum prestress level is noted for the MG 6A dome and equals
around 7 Hz, thus, the biggest discrepancy is for the RG 12B dome — around 68 Hz. The natural
frequencies that correspond to the infinitesimal mechanisms are characterized by high
sensitivity to the changes in the initial prestress level.

In the case of RG ngA domes (Fig. 5.33a), the increasing number of load-bearing girders
is not affecting the first natural frequency f1 and last natural frequency fnm. For MG ngA
(Fig. 5.33b), the situation is similar, however, a small discrepancy can be noted (around 0.5 =
2 Hz for the S,,, = 50 KN). In turn, for the regular and modified domes of type B (RG ngB
and MG ngB) (Fig. 5.33c, d) an increase in the number of load-bearing girders results in the
increase in the value of the last natural frequency fnm. Moreover, the last natural frequency
fnm of the regular domes is at least 20% higher than the natural frequencies of the modified
domes.

It should be noted, that the forms of vibrations, in the case of S = 0, realize the forms of
the infinitesimal mechanisms. Although each form of vibration is unique, some natural
frequencies are characterized by the same values. As an example, the MG 6A dome is
characterized by eight different forms of vibrations (corresponding to the infinitesimal
mechanism) (Fig. 5.34), but six different frequencies (f, = f; and fs; = f;) (Table 5.10) (the
frequencies that are characterized by the same values are grouped in gray). In the case of other

domes, it is the same.
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Fig. 5.33. Influence of the initial prestress S on the natural frequency f of: a) RG ngA, b) MG ngA,
¢) RG ngB, d) MG ngB

Table 5.10. Values of natural frequencies corresponding to the mechanism of MG 6A dome

fi [Hz]
S [kN]
fl fZ f3 f4- f5 f6 f7 f8
0 0 0 0 0 0 0 0 0
1 0.726 | 0.842 | 0.842 | 1.044 | 1.247 | 1.247 | 1262 | 1.747
5 1632 | 1.883 | 1.883 | 2335 | 2.788 | 2.788 | 2.821 | 3.906

10 2.296 | 2.662 2.662 3.302 | 3.943 3.943 3.990 5.524
20 3.247 | 3.764 | 3.764 | 4.670 | 5.575 5.575 5.463 7.813
30 3.976 | 4.608 4608 | 5.720 6.827 6.827 6.911 9.569
40 4591 | 5.319 5.319 6.604 | 7.882 7.882 7.980 | 11.049
50 5.133 | 5.945 5945 | 7.384 | 8811 8.811 8.922 | 12.353
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9)

Fig. 5.34. Forms of vibrations for the MG 6A dome for frequency: a) f;, b) f2, ¢) f3,d) f4, €) fs,
f) f6.9) f7. 1) fs
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Conclusion of the comparison: The natural frequencies corresponding to the infinitesimal

mechanisms are characterized by a high sensitivity to the change in the initial prestress level.
Additionally, the impact of the prestress is nonlinear. The number of load-bearing girders
affects only the last natural frequency fnm of the type B domes (open section), especially
regular ones (RG ngB). The first natural frequency f1 remains on the same level for each

considered dome and is not affected by the number of load-bearing girders.

Example 2

Subject of the comparison: RG ngA, RG ngB, MG ngA, MG ngB domes (ng = {6,8,10,12})

- additional natural frequencies dependent on the initial prestress

Aim of the comparison: (1) Whether the initial prestress level impact the next natural

frequencies that not correspond to the infinitesimal mechanism? (2) Whether the number of
load-bearing girders impacts the natural frequencies that not correspond to the infinitesimal
mechanisms? (3) How the design solution (regular or modified, open or close upper section)

impacts the dome behaviour?

As was stated earlier, the number of natural frequencies depending on the initial prestress
level is equal to a number of the infinitesimal mechanisms (f,,,,,). Nevertheless, for the type A
Geiger domes (RG ngA and MG ngA) it is different. In this case, the number of dependent

frequencies f;,:q: IS greater and depends on the number of girders (ng):

frotat = fam + faaas  faaa = (ng — 3) (5.3)

In Fig. 5.35 and Fig. 5.36 the last frequency corresponding to the infinitesimal mechanism
(fum), the next additional dependent on the prestress (f,qq) and the first independent of
prestress (frorar+1) ONES are shown. In the absence of prestress (S = 0) the frequency f,, 1S
equal to zero, and after introducing prestress S the values f,,, increase in nonlinear way.
Whereas, the behaviour of additional frequency depended on prestress (f,q4q) is different. In
the absence of prestress f,44 1S NOt zero and dependence on the prestress is almost linear. The
smallest dependency on the initial prestress level is noted for the f19 = f20 of the RG 6A
dome, the difference between S = 0 and S = 50 kN is 5.7 Hz. The biggest dependency, thus,
is for 39 of the RG 12A dome, the difference is 16.1 Hz. The additional natural frequencies
characterized by a little sensitivity to the change in the initial prestress level, comparing to the

natural frequencies, corresponded to the infinitesimal mechanism. It should be noted, the
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number of frequencies f,,4, and the sensitivity on the initial prestress changes, depends on the

number of girders. More sensitive to the changes are higher frequencies.
In turn, the value of the first frequency independent of prestress (fota1+1) TOr all Geiger

domes type A does not depend neither on the number of loads-bearing girders nor initial

prestress level. The value varies f;,tq1+1 = 42.7 Hz + 44.7 Hz.

a) b)
Co—————C o— a o—0—= -— &

40 40

30 30
0 1'0 20 30 40 50 0 10 20 30 40 50

S [KN] S [kN]
—a— 22 f23=f24 --m--125=f26
—a—f18 f19=f20 --@--f21 —8=—122 27 28
c) d)
[T = = - a
40
30
N
L
" y 0 1I0 2IO 30 40 50
0 10 ZSO[kN] 30 40 50 S [kN]
26 27=628  --m--F29=30 —a—1f30 f31=f32 --m--f33=f34
f35=f36 f37=f38 --m--f39
f31=f32 33 —a—134
—&—f40

Fig. 5.35. Influence of the initial prestress S on the natural frequencies f,,, fadaa, ad frotai+1 OF: @)
RG 6A, b) RG 8A, ¢) RG 10A, d) RG 12A
In the case of the domes type B, the natural frequencies that do not correspond to the
infinitesimal mechanism are independent of the initial prestress level. It means that,

independent of the number of loads-bearing girders, the number of dependent frequencies is

equal:
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frotat = fam (5.4)

For all Geiger domes type B, the value of the first frequency independent of prestress are not
depended neither on the number of loads-bearing girders nor the initial prestress level, and the
range equals fiorai+1 = 40.9 Hz + 42.2 Hz.

a) b)

-——— -— a —a—ao—un0 —=a a

0 10 20 30 40 50 0 10 20 30 40 50
S [kN] S [kN]
—=—f8 f9=f10 --@--fl1 —m—f12 —=—18 f9=f10 --m--f11=f12
f13  —e—fl4
c) d)
00— — o—0=
40
30
Z, 20 EE S a-nee +
R L A *— ———— _*
10

0 10 20 30 40 50

S [kN] S [kN]
—a—1f8 f9=f10  --m--f11=f12 —a—1f8 fo=f10 --m--f11=f12
f13=f14 f15 —a—f16 f13=f14 f15=f16 --m--f17
—a—f18

Fig. 5.36. Influence of the initial prestress S on the natural frequencies f,m, faaa» @ frotai+1 OF: @)
MG 6A, b) MG 8A, c) MG 10A, d) MG 12A

Conclusion of the comparison: The additional natural frequencies that depend on the initial

prestress level occur only in the case of type A domes and highly depend on the number of
load-bearing girders. However, in comparison to the natural frequencies corresponding to the
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infinitesimal mechanisms, they are characterized by little sensitivity to the initial prestress level
and the impact of prestress is linear. In turn, in the case of type B domes, the number of natural
frequencies depended on the initial prestress level equal to the number of infinitesimal

mechanisms.

Example 3

Subject of the comparison: RG 6A, RG 6B, MG 6A, MG 6B domes - free frequencies

Aim of the comparison: (1) How does the initial prestress level impact free frequencies? (2)

How do the value and position of load impact free frequencies?

The analysis of free frequencies of the structure with different variants (value and position)
of load was performed. Tables 5.10-5.13 contain values of the first f;(P) and last f,,,(P)
frequency that correspond to the infinitesimal mechanisms. The increasing of the external load
results in the decreasing of the minimum prestress level S,,,;, value, except for the RG 6B dome
(Table 5.11). The behaviour of this dome is unique, and the S,,,;;, value do not depend on the
load value nor the position and always equals 2 KN. In other cases, the increase of the load is
significantly affecting the values of the S,,,;,. In the case of the domes type A (RG 6A, MG
B6A), the S,,;,, value decreases when the load position changes from the P to the P®. For
example, in the case of load P = 5 kN, the minimum prestress level changed from 8 kN to 24
kN for RG 6A dome (Table 5.12), and from 11 kN to 36 kN for MG 6A dome ( Table 5.13).
For the MG 6B dome, the situation is the opposite. The minimum initial prestress level is
changing from 41 kN to 2 kN for MG 6M dome (Table 5.14).

Table 5.11. Natural f;(0) and free f;(P) frequencies [Hz] for the dome RG 6B

s f(P) f31(P)
£,(0) pD P® p® f21(0) pD P® p®

) 1KN | 5KN | 1kN | 5kN | 1kN | 5kN 1kN | 5kN | 1kN | 5kN | 1kN | 5kN

0 | 0.00 0.00

1 ] 086 5.45

2 | 122|173 |275|182| 278|169 | 257 771 | 10.81 | 17.04 | 11.30 | 17.60 | 10.88 | 17.16

5 | 192 | 208 | 290 | 2.14 | 297 | 2.06 | 2.75 | 12.18 | 13.04 | 17.99 | 13.38 | 18.57 | 13.19 | 18.20
10 | 272 | 274 | 320 | 2.76 | 3.29 | 2.74 | 3.10 | 16.69 | 17.23 | 19.91 | 17.34 | 20.45 | 17.41 | 20.26
20 | 3.85 384 | 3.95 | 3.84 | 401 | 3.84 | 3.90 | 23.06 | 24.21 | 24.64 | 24.22 | 2494 | 2453 | 25.16
30 | 472 | 470 | 471 | 470 | 474 | 470 | 4.69 | 28.02 | 29.68 | 29.51 | 29.68 | 39.63 | 29.81 | 30.04
40 | 544 | 543 | 541 | 543 | 543 | 543 | 540 | 32.23 | 34.31 | 33.97 | 34.31 | 34.02 | 34.42 | 34.46
50 | 6.09 | 6.08 | 6.05 | 6.08 | 6.06 | 6.08 | 6.04 | 35.94 | 38.39 | 38.00 | 38.38 | 38.01 | 38.49 | 38.46
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Table 5.12. Natural f;(0) and free f;(P) frequencies [Hz] for the dome RG 6A

c f(P) f1s(P)
£(0) P P® P® f18(0) P P® P®
[N 1KN | 5KN | 1kN | 5kN | 1kN | 5kN 1KN | 5kN | 1kKN | 5kN | 1kN | 5kN
0 0.00 0.00
1 0.86 231
2 122 | 1.15 3.27 3.17
5 193 | 1.89 2.07 1.68 5.17 5.10 5.58 5.81
8 245 | 241 | 2.23 | 2.48 2.33 6.54 6.49 6.31 6.68 6.84
10 | 273 | 271 | 257 | 2.75 2.66 7.32 7.27 7.10 7.38 7.51
20 | 3.87 | 3.85 | 3.76 | 3.86 3.84 10.35 | 10.31 | 10.18 | 10.33 10.38
22 | 4.06 | 404 | 3.96 | 4.04 | 410 | 4.03 10.85 | 10.82 | 10.69 | 10.83 | 11.08 | 10.88
24 | 424 | 422 | 414 | 422 | 426 | 421 | 3.78 | 11.34 | 11.30 | 11.18 | 11.32 | 11.50 | 11.35 | 12.00
30 | 474 | 472 | 4.65 | 4.72 | 472 | 4.72 | 4.46 | 12.67 | 12.64 | 12.53 | 12.65 | 12.73 | 12.67 | 13.10
40 | 547 | 545 | 540 | 546 | 543 | 545 | 531 | 14.63 | 1461 | 1451 | 1461 | 1461 | 14.63 | 14.84
50 | 6.11 | 6.10 | 6.05 | 6.10 | 6.07 | 6.10 | 6.01 | 16.36 | 16.34 | 16.25 | 16.34 | 16.31 | 16.35 | 16.46
Table 5.13. Natural f;(0) and free f;(P) frequencies [Hz] for the dome MG 6A
s f1(P) fe(P)
£(0) PO P® pP® fo(0) pD P® pP®
N 1TKN | 5kN | 1kKN | 5kN | 1kN | 5kN 1kN | 5kN | 1kN | 5kN | 1kN | 5kN
0 0.00 0.00
1 0.73 1.75
3 126 | 1.19 3.03 3.02
5 1.62 | 1.56 3.91 3.90
8 2.05 | 1.99 2.08 4.95 4,94 5.27
10 | 2.30 | 2.26 2.31 5.52 5.52 5.73
11 | 241 | 235 | 2.22 | 2.39 5.79 5.79 5.79 5.95
12 | 251 | 246 | 2.34 | 2.49 251 6.05 6.05 6.05 6.17 6.06
20 | 325|322 | 3.12 | 3.23 3.23 7.81 7.81 7.80 7.85 7.80
30 | 3.98 | 3.96 | 3.88 | 3.96 3.96 9.57 9.56 9.55 9.58 9.56
34 | 423 | 422 | 419 | 4.20 | 4.20 | 4.23 10.19 | 10.18 | 10.17 | 10.22 | 10.44 | 10.25
36 | 436 | 435|433 | 432|432 | 436 | 431 | 1048 | 10.48 | 10.45 | 1052 | 10.71 | 10.56 | 10.47
40 | 459 | 458 | 451 | 458 | 455 | 458 | 454 | 11.05 | 11.05 | 11.04 | 11.05 | 11.22 | 11.04 | 11.03
50 | 5.13 | 5.12 | 5.06 | 5.12 | 5.08 | 5.12 | 5.09 | 12.35 | 12.35 | 12.34 | 12.35 | 12.45 | 12.34 | 12.32
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Table 5.14. Natural f;(0) and free f;(P) frequencies [Hz] for the dome MG 6B

c f1(P) f21(P)
£(0) P P® P® £>1(0) P P® P®

N 1kN [ 5kN | 1kN | 5kN [ 1kN | 5kN 1kN | 5kN | 1kN | 5kN | 1kN | 5kN

0 | 0.00 0.00

1 ] 072 421

2 1.02 141 | 216 | 5.96 8.64 | 13.21

5 1.61 1.76 | 2.33 | 9.42 10.56 | 14.20
10 | 2.28 2.32 229 | 2.61 | 13.32 13.56 13.52 | 15.87
14 | 2.70 | 2.69 2.72 2.66 | 2.92 | 15.77 | 18.91 15.71 15.66 | 17.45
20 | 3.23 | 3.22 3.22 3.13 | 3.28 | 18.84 | 20.72 18.77 18.85 | 19.61
26 | 3.68 | 3.67 355 | 3.72 | 3.69 | 3.68 | 21.48 | 22.67 21.33 | 21.65 | 21.47 | 21.65
30 | 3.96 | 3.94 3.94 | 3.97 | 3.94 | 3.94 | 23.08 | 23.92 22.97 | 23.08 | 23.06 | 23.33
40 | 4.57 | 4.55 455 | 454 | 456 | 4.53 | 26.65 | 27.06 26.54 | 26.42 | 26.63 | 26.72
41 | 462 | 461 | 457 | 461 | 458 | 4.69 | 459 | 26.98 | 27.31 | 32.27 | 26.97 | 26.79 | 27.16 | 26.91
50 | 5.11 | 5.09 | 5.06 | 5.09 | 5.07 | 5.10 | 5.06 | 29.79 | 30.01 | 33.81 | 29.69 | 29.47 | 29.77 | 29.79

The biggest discrepancy between natural and free frequencies is noticeable at the low
levels of the initial prestress, especially for the last frequency corresponding to the mechanism.
In the case of RG 6B dome, the difference between natural and free frequencies is the biggest,
up to 55% (in the case P®) = 5 kN and S = 2 kN), because of the lowest S,,,;, value for each
load case. The situation is similar for MG 6B dome in case of the same load case and prestress
level. Nevertheless, the increasing of the initial prestress level results in the convergence of the
values of natural and free frequencies. In the case of the prestress level S = 50 kN, the
difference in the first frequency is around 1.6% and 1%, and about 0.8% and 11% for the last

frequency, for the dome type A and B respectively.

Conclusion of the comparison: The free frequencies of the dome are highly dependent on the

initial prestress level. The dependency on the load value and position is significant only in low
levels of initial prestress, an increase in the initial prestress level results in a decrease in the

sensitivity of the free frequencies to the load.
5.4.4. Dynamic stability analysis

The dynamic stability analysis of a small-scale six-girder Geiger domes is considered (see
section 5.4.1). Particularly, the influence of the initial prestress level on the shape and range of

unstable regions is analyzed. A few examples are provided in order to compare the behaviour
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of different domes under the periodic load. Firstly, the RG 6A and MG 6A domes are compared
(Example 1), then the RG 6A and RG 6B (Example 2), and the RG 6B with MG 6B domes
(Example 3) are considered. The consideration is concluded with summarized results for all

domes (Example 4).

Example 1

Subject of the comparison: RG 6A (Fig. 5.37a) and MG 6A (Fig. 5.37b) domes — unstable

regions

Aim of the comparison: (1) Does the initial prestress level affect unstable regions for the type

A domes? (2) Does the structure modification of type A domes (Fig. 5.37b) affect unstable

regions?
a) RG 6A b) MG 6A
P=1kN - Spi, = 5kN P=1kN - S,;, = 8kN
P=5kN = S, = 22kN P=5kN - S, = 34kN
/,X j

;x
Fig. 5.37. External load application in the case of position P for: a) RG 6A, b) MG 6A

The first example concerns influence of the initial prestress level on the unstable regions
of the RG 6A and MG 6A domes. The load position P is considered in order to avoid the
symmetrically distributed external load. The selected instability regions are presented for three
levels of initial prestress, and two load variants P = 1 kN (Table 5.15) and P = 5 kN (Table
5.16). The results indicate quite similar behaviour of regular and modified domes. In the case
of first load variant (P = 1 kN) (Table 5.15) the domes are characterized by the similar S,
level, and the impact of the initial prestress level on the limits of instability regions is
comparable. The biggest instability regions are noted for the last resonant frequency
corresponded to the infinitesimal mechanism (n18 for RG 6A, and n8 for MG 6A). For both

domes, the resonant frequencies increase with an increase of the initial prestress level, and the
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instability regions narrows. Unlike in the case of load variant P = 5 kN, for P = 1 kN the
instability regions occurred only for S,,,;, level of initial prestress, however, not for the all-
selected frequencies (in case of modified dome). The increase of load value has great impact
on the increase of resonant frequencies of the domes. The resonant frequencies for the P = 5 kN

are two times the resonant frequencies for P = 1 kN.

Table 5.15. Limits of chosen four main instability regions of the RG 6A and MG 6A domes for
P = 1 kN (R - RG 6A dome, M — MG 6A dome)

S,in [KN] S =15kN S =25kN
—-nl -on6 —onl2 -8 -o-nl -o-n6 —-o-nl2 -e-n18 -o-nl -6 -o-nl2 -e-nl8
35 35 35
30 30 30
E 25 E 25 E 25
Z 2 Z 2 Z 2
R X X 4
n n n
n 15 15 N 15 &
* T I
g ——9 L L
= 10 = 10 = 10
5 * 5 5
0 1 0 0
0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75
v [] v[] v[]
—O—nl —.—113 +T]5 —.—ng +T‘|1 —0—113 —.—nj —.—1']8 —.—nl —0—1']3 —0—-[15 —.—rl8
35 35 35
30 30 30
E 25 E 25 E 25
Z 20 Z 20 Z 20
M X X X
[ee] n [Te]
15 15 N 15
170) 1 I
= 2 L
= 10 4%1 = 10 = 10
1 5
0+ + + 1 0 0
0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75
o [] o[l v[]
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Table 5.16. Limits of chosen four main instability regions of the RG 6A and MG 6A domes for P =

5 kN (R — RG 6A dome, M — MG 6A dome)

Simin [KN] S =40kN Smax = S50KN
-1 n6 —o-nl2 —e-n18 -1 n6 —o-nl2 -e-nl18 -1 n6 -o-nl2 -e-nl8
35 35 35
30 30 l 30
i 25 25 5
€2 Z Z
R N o o
I 15 T:' 15 '-Ifl’ 15
< ® @
=10 ¢ = 10 = 10
5 5 5
0 0 0
0 0.25 0.5 0.75 0 0.25 05 0.75 0 0.25 05 0.75
v [-] v [] v [-]
—0—111 n3 —0—1]5 —0—1]8 —Q—nl n} —0—1]5 —O-T'|8 —Q—nl 1']3 —0—1']5 —0—1]8
35 35 35
30 30 30
= — —
L 25 N 25 N5
z = —4 =
< 20 Z 2 2%
ML 2 2
12) 15 w15 W1
w [92)
~ 10 — <10 <10
5 5 5
0 0 0
0 0.25 05 0.75 0 0.25 0.5 0.75 0 0.25 05 0.75
v[] v [] v [-]

As in the case of natural frequencies, Geiger domes type A characterized by additional

resonant frequencies dependent on the initial prestress level (see section 5.4.3). The RG 6A and

MG 6A domes are characterized by three additional resonant frequencies, i.e., n19, n20, n21,

and n9, n10, n11 respectively (Table 5.17). The additional frequencies do not depend on the

pulsatility index v, the boundaries of instability regions coincide. Nonetheless, the regular dome

IS more sensitive to change in the initial prestress level. The relative increase (RI) is about

36.69% - 41.74%, while for the modified dome it is around 32.58% - 37.47% (in the case

P = 1 kN). The increase in the external load led to a decrease in the influence of the initial

prestress. The R1 is even three times smaller in the case of load P = 5 kN than for the P = 1 kN.
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Table 5.17. Resonant frequencies of the RG 6A and MG 6A domes in the case of load position P(?)

RG 6A MG 6A
Resonant frequency n(v = 0 + 0.75) = const.
n19 n20 n21 n22 n9 n10 n11 n12
P =1kN

Smin 26.93 26.93 29.06 88.38 25.29 25.29 28.05 85.19

Smax 36.81 36.82 41.19 88.83 33.53 33.54 38.56 85.52

RI* | 36.69% | 36.72% | 41.74% | 0.51% | 32.58% | 32.62% | 37.47% | 0.39%

P =5KkN

Smin 31.24 31.24 34.44 88.56 30.76 30.78 35.09 85.39

Smax 36.85 36.89 41.27 88.83 33.58 33.61 38.65 85.52

RI* | 17.96% | 18.09% | 19.83% | 0.31% | 9.17% | 9.19% | 10.15% | 0.15%

RI* — relative increase: [(7(Smin ) — N(Smax))/M(Smin) - 100%]

Fig. 5.38 presents the impact of the initial prestress level on the range and distribution of
instability regions. The change is measured by the nondimensional parameter A. For each dome,
the range of instability regions is equal to 1 for S,,,;,, level. In the case of the RG 6A dome (Fig.
5.38 a, b), the increase in the initial prestress level has greater impact on the areas than in the
case of MG 6A dome (Fig. 5.38 ¢, d). For the P = 1 kN and S = 15 kN, the areas are smaller
by about 95% and 68%, for RG 6A and MG 6A respectively (the changes are measured taking
into account average value for four regions). The situation is similar for P =5KkN and S =
40 kN, the average decrease is about 86% and 30%, for RG 6A and MG 6A respectively. In the
case of the RG 6A dome, changes in the range of the second unstable region corresponded to
the sixth resonant frequency n6 should be noted. The increase of the initial prestress level results
in the decrease of the area (up to 90% - 100%), and then in the significant increase. For the MG
6A dome, the behaviour of the first unstable region corresponded to the first resonant frequency

n1 is comparable.
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a) b)
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Fig. 5.38. Influence of the initial prestress level S on the range of unstable regions of: a) RG 6A for
P = 1 kN, b) RG 6A for P = 5 kN, ¢) MG 6A for P = 1 kN, d) MG 6A for P = 5 kN

Conclusion of the comparison: In the case of type A domes, the probability of the occurrence
of the unstable regions is low. Only in the case of S,,;,, and low initial prestress level, there are
unstable regions, however, the areas are small. Comparing the behaviour of regular and
modified Geiger domes type A, it was noted that introducing additional circumferential cables
is not affect the distribution of unstable regions. It means, the introducing of the additional
cables is not necessary. Nevertheless, in the case of a regular dome, an initial prestress has a
greater impact on the area of unstable regions, and the structure is characterized by higher

resonant frequencies.
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Example 2

Subject of the comparison: RG 6A (Fig. 5.39a) and RG 6B (Fig. 5.39b) domes — unstable

regions

Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of

different dome types (closed (Fig. 5.39a) or open (Fig. 5.39b) upper section)? (2) Does the
structure modification affect unstable regions in the case of different dome types (closed (Fig.
5.39a) or open (Fig. 5.39b) upper section)?

a) RG 6A b) RG 6B
P=1kN - S, =5kN P=1kN - S,;, = 2kN

P=4"§5kN—>Smm=24¥l’<‘N P=/ \?kN—>Smm=2k/I\i
,[l:[%~,f1i.]|~ /" »[I poed I
| { Y =2 4 | o ‘]"_‘ N

Fig. 5.39. External load application in the case of position P® for: a) RG 6A, b) RG 6B

The second example concerns influence of the initial prestress level on the unstable regions
of the RG 6A and RG 6B domes (difference is in the upper section). The dynamic behaviour of
domes compared in the case of load position P®) for P = 1 kN (Table 5.18) and P = 5 kN
(Table 5.19). The change in limits of instability regions is presented for three levels of initial
prestress. In the case of low load value (Table 5.18), the S,,,;, is on the similar level, however,
the instability regions distribution is different. In the case of RG 6B dome, the initial prestress
has a greater impact on the resonant frequencies and dome is characterized by the widest
instability region corresponding to the last resonant frequency n31. Nevertheless, the
introducing of higher levels of initial prestress causes the coinciding of the limits of instability
regions, and resonant frequencies n do not depend on the pulsatility index v, and the risk of the
excitation of unstable motion decreases. The increase of external load results in the increasing
Smin value for the RG 6A dome, and widening of the limits of instability regions for both
structures (Table 5.19). In the case of RG 6B dome, instability regions occur for each considered

resonant frequency, and only for first (n1) and last (18) for RG 6A dome. The increase of the
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initial prestress level results in the narrowing of located regions, nonetheless, small dependency

of resonant frequencies n on the pulsatility index v is noticed at high levels of prestress.
In the case of the domes type B, the number of resonant frequencies dependent on the

initial prestress level is equal to the number of infinitesimal mechanisms. The additional

frequencies do not depend neither on the pulsatility index v, nor the initial prestress S (Table

5.20). The relative increase (RI) is about 0.53% - 0.55%, similarly to the independent frequency
of the RG 6A dome (n22).

Table 5.18. Limits of chosen four main instability regions of the RG 6A and RG 6B domes for P =
1 kN (A - RG 6A dome, B — RG 6B dome)

Soin [KN] S =15kN S =25kN
—o-nl n6 —e-nl2 -e-n18 -o-nl n6 —o-nl2 -e-nl8 —o-nl né —e-nl2 -e-nl18
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L L L
) < 3 )
Al 0 i
I
@ 20 o 20 o 20
= = =
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Table 5.19. Limits of chosen four main instability regions of the RG 6A and RG 6B domes for P =
5 kN (A — RG 6A dome, B — RG 6B dome)

Smin [KN] Smin + 10 kN Smin + 20 kN
—o-nl n6 -e-nl2 -e-n18 —o-nl n6 —o-nl2 -e-nl8 -o-nl n6 -o-nl2 -e-nls8
50 50 50
N 40 N 40 N 40
< < <
z 3 z
30 30 30
Al : ———
N —————3§ ™ i
o 20 o 20 o 2
< = =
10 ‘ 10 10
0 t 0 0
0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75
v[] v[] vl
-1 n10 -e-n20 -e-n31 -o-n1 n10 —e-n20 -e-n31 —o-nl nl0 -e-n20 -e-n31
——%
50 50
50
[ e §
'jﬁ:' 40 X E 40 E 0
i S = =
Z ——eo Z z
o~ I T
m — N
@ 20 o 20 : B
- < T %Tf‘ <L
0<?j = =
10 ; 10 10
0 t 1 0 0
0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75
v[] v[] vl

Table 5.20. Resonant frequencies of the RG 6A and RG 6B domes in the case of load position

p®
RG 6A RG 6B
Resonant frequency n(v = 0 + 0.75) = const.
n9 | n20 | nm21 | n22 ] n32 | 933
P =1KkN
Smin 26.79 26.90 28.94 88.38 83.77 180.25
Smax 36.79 36.83 41.18 88.83 84.21 181.25
RI* 37.33% 36.91% 42.29% 0.51% 0.53% 0.55%
P =5KkN
Simin 31.36 31.69 34.77 88.57 83.83 180.38
Smax 36.72 36.93 41.20 88.83 84.21 181.25
RI* 17.09% 16.54% 18.49% 0.29% 0.45% 0.48%

RI* —relative increase: [(1(Smin ) — 1(Smax))/1(Smin) - 100%]
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Next, the impact of the initial prestress level on the range and distribution of instability
regions is compared (Fig. 5.40). For the P = 1 kN and S = 15 kN, the areas are smaller by
about 80% and 96%, for RG 6A and RG 6B respectively (the changes are measured taking into
account average value for four regions). The increase in the initial prestress level has greater
impact on the areas of instability regions in the case of RG 6B dome. After introducing the
increased external load P = 5 kN, the increase of the initial prestress level nonlinearly decreases
the ranges of regions of RG 6B dome. In the case S = 35 kN, the areas are smaller by about
44% and 95%, for RG 6A and RG 6B respectively.

a) b)

1.00 - 1.00 -

0.75 1 0.75
. 0.50 + T 050 +
< <

0.25 1 0.25 A

0.00 - 0.00 -

5 10 15 20 25 30 35 40 45 50 24 25 30 35 40 45 50
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Fig. 5.40. Influence of the initial prestress level S on the range of unstable regions of: a) RG 6A for
P = 1KkN, b) RG 6A for P = 5 kN, ¢) RG 6B for P = 1 kN, d) RG 6B for P = 5 kN

Conclusion of the comparison: The dynamic stability analysis of regular types A (RG 6A) and
B (RG 6B) domes shows type B that dome (RG 6B) is characterized by bigger unstable regions
and higher resonant frequencies. The risk of unstable excitation vibrations is much higher at
low initial prestress levels. Nevertheless, introducing the higher prestress results in narrowing
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the unstable regions of both domes and decreases the risk of the excitation of motion with

increasing amplitudes.
Example 3

Subject of the comparison: RG 6B (Fig. 5.41a) and MG 6B (Fig. 5.41b) domes — unstable

regions

Aim of the comparison: (1) Does the initial prestress level affect unstable regions for the type

B domes? (2) Does the structure modification of type B domes (Fig. 5.41b) affect unstable

regions?
) RG 6B b) MG 6B
P=1kN - S, = 2kN P=1kN - S, = 14kN
P=5KkN = S, =2kN —5kN—>Smm—41kN

| l[l*’"'
TI:.»f RO

A
Fig. 5.41. External load application in the case of position P(!) for: a) RG 6B, b) MG 6B

The third example aims to compare the dynamic response of the RG 6B and MG 6B domes.
The dynamic stability analysis performed in the case of load position P(") for P = 1 kN (Table
5.21) and P = 5 kN (Table 5.22). The limits of instability regions are presented for three levels
of initial prestress. Even the low external load (P = 1 kN) cause the appearance of instability
regions for considered domes. Nonetheless, in the case of the regular dome, instability regions
occur for each considered resonant frequency, and for the modified dome — only for the last
resonant frequency (n21). It is worth to mention, that increasing of initial prestress by 10 kN
resulted in complete narrowing of limit of instability regions of regular dome. For the modified
one, the increasing resulted in the reduction of instability region for the last resonant frequency
(n21) and increased the limits of region for third considered resonant frequency (n14). With
the higher external load, the situation is similar. However, in the case of modified dome, the

increasing of the initial prestress to S,,. = 50 kN did not cause the narrowing of the instability
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region, and the risk of the excitation of motion with increasing amplitudes is still high. The
situation is opposite for the regular dome. Comparing the resonant frequencies of the RG 6B
and MG 6B for the same initial prestress level, the resonant frequencies of the regular dome are
higher.

Domes of type B are characterized by greater instability regions compared to type A.
Additionally, the instability regions correspond not only to the last resonant frequency. Fig.
5.42 presents instability regions corresponding to all resonant frequencies of the regular and
modified dome in the case of the minimal prestress level, and P for P = 5 kN (in order to
compare the behaviour on the same prestress level). Limits of most regions are concentrated in

one area, creating a higher risk of occurring excitation vibrations.

Table 5.21. Limits of chosen four main instability regions of the RG 6B and MG 6B domes for P =
1 kN (R - RG 6B dome, M — MG 6B dome)

Spin [KN] Spin + 10 kN Spin + 20 kKN
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Table 5.22. Limits of chosen four main instability regions of the RG 6B and MG 6B domes for P =
5KkN (R - RG 6B dome, M — MG 6B dome)

Simin [KN] Smin + 5 kN Smin + 10 kN
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Fig. 5.42. Limits of all instability regions for the load P = 5 kN of: a) RG 6B, b) MG 6B
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The impact of the initial prestress level on the range and distribution of instability regions
is also compared (Fig. 5.43). In the case of regular dome, for P = 1 kN and § = 15 kN, the area
of instability regions is decreased by 98% (the changes are measured taking into account the
average value for four regions). In the situation P = 5 kN and S = 15 kN, the decrease is about
54%. For the modified dome and P = 1 kN, the increasing of the initial prestress level results
in the decreasing areas that correspond to the frequencies n7 and n21, thus increasing for n1

and n14. Similarly, is in the case of higher external load.

a) b)
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Enl my7 mEnl4 mn21 Enl mEn7 mEnl4 En21

Fig. 5.43. Influence of the initial prestress level S on the range of unstable regions of: a) RG 6B P =
1kN, b) RG6B P =5KkN, ¢) MG 6B P = 1kN, d) MG 6B P = 5 kN

Conclusion of the comparison: Comparing the regular and modified Geiger domes, it was noted

that modified domes are characterized by wider unstable regions. The increase of the load
causes the lower impact of the initial prestress on the distribution of unstable regions in the case
of the modified dome (MG 6B). Although the regular dome (RG 6B) is characterized by higher
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resonant frequencies, the initial prestress has a greater impact on the area of unstable regions.

In conclusion, the regular dome (RG 6B) is considered as more stable.
Example 4

Subject of the comparison: RG 6A, RG 6B, MG 6A, MG 6B — unstable regions

Aim of the comparison: (1) How do the load value and position affect the distribution of

unstable regions? (2) For which dome the probability of the unstable regions is least likely to
occur? (3) What is the most optimal recommended initial prestress level?

The summarized results present the distribution of instability regions that correspond to
the last resonant frequency for each dome, in the case of different load situations (Fig. 5.44).
The load is equal to 1 kN and 5 kN, whereas different load positions are defined as: 1,2, or 3.
For example, in the charts the caption “RA 1(3)” stands for regular dome type A loaded with
force 1 kN applied in position 3. The results are presented for the S,,;,, level of prestress, in
order to compare the distribution of widest regions. In the case of the domes type A (Fig. 5.44a,
c), the limits of instability regions coincide, and resonant frequencies n do not depend on the
pulsatility index wv, the risk of the excitation of unstable motion is low. Additionally, the
increase in the external load causes an increase in the resonant frequencies. For the regular
dome type B (Fig. 5.44b), the limits of instability regions are significantly wider and expand
with higher external load. The position of the applied load in not affect the distribution of limits.
The modified dome type B (Fig. 5.44d) is characterized by different behaviour compared to
other domes. The distribution of instability regions is affected both by load value and position.
The widest regions are in the case of load position P(), thus the narrowest in the case of load
position P®.

Next, the influence of the initial prestress level on the areas of the unstable regions is
studied (Fig. 5.45). In the case of regular type A dome (Fig. 5.45a), the impact of prestress can
be noticed only for P = 5 kN in the case of load position P (RA 5(2)) and P® (RA 5(3)). In
turn, in the case of the modified type A dome (Fig. 5.45c) only for P = 5 kN in the case of load
position P (MA 5(2)). The impact of prestress on areas of domes type B is nonlinear, on the
other hand (Fig. 5.45b, d). The nonlinearity increases with the increasing of external load.
Nonetheless, the influence of the initial prestress level is significantly smaller if S > 30 kN.

In the case of type B domes and load P = 1 kN, the probability of occurrence of unstable

regions is low. However, the situation is the opposite in the case of load P = 5 kN. The size of
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unstable regions is comparable for different load positions for regular type B dome (RG B). On

the other hand, the size of unstable regions of modified type B dome depends on load value and

position, and can vary.
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Fig. 5.44. Influence of the initial prestress level S on the range of last unstable region of: a) RG 6A,

b) RG 6B, ¢) MG 6A, d) MG 6B
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Fig. 5.45. Influence of the initial prestress level S on the area of unstable region A,: a) RG 6A, b)
RG 6B, c) MG 6A, d) MG 6B

Conclusion of the comparison: The load value and position have no effect in the case of the

MG 6A dome. The situation is similar for the RG 6A dome. Both structures are characterized
by narrow unstable regions. In turn, it is different in the case of type B domes. For the regular
type B dome, the load value affects the unstable regions. Wherein, the bigger probability of the
unstable regions to occur is in the case of a bigger load and lower initial prestress level (from
S =0toS = 30 kN), and the unstable regions are the same regardless the load position. In turn,
the unstable regions of the modified type B dome depend both on the value and position of the
load. It should be noted, that in the case of modified type B, load position P, and force 5 kN
(MB 5(1)), the probability of the occurrence of the unstable regions is high and not depending
on the initial prestress level. The probability of the occurrence of the unstable regions is getting
smaller with an increasing of the initial prestress level (for each dome, except example MB

5(1)). The most optimal recommended initial prestress level is above S = 25 kN.
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5.5. Summary

The behaviour of the Geiger dome can be controlled by adjusting the initial prestress level.
The structure’s response to the external load conditions highly depends on the dome type. The
impact of the load is the most significant at low values of the initial prestress. The Geiger dome
IS more susceptible to the asymmetrical load, which causes displacements consistent with
infinitesimal mechanisms. In the case of a symmetrical load, the displacements are smaller and
insensitive to the prestress. The static analysis results that additional circumferential cables in
the structure do not improve stiffness nor reduce displacements. Thus, the regular layout is
considered as a better solution due advantage related to the weight of the structure. Comparing
the differences in the upper sections, the regular dome with an open upper section (RG 6B) is
characterized by the lowest level of minimum prestress, higher dependency on the initial
prestress level adjustment, and higher ability to control the static parameters.

In the case of the dynamic analysis, the natural frequencies level of the type A domes (RG
ngA and MG ngA domes) were not related to the number of load-bearing girders of the
structure. Additionally, only these types of structures were characterized by the additional
natural frequencies depending on the initial prestress level, unlike the type B domes (RG ngB
and MG ngB). Comparing the free frequencies of the considered structures, the biggest
discrepancy remains at the low levels of the initial prestress. The biggest discrepancy between
natural and free frequency was noticed in the case of RG 6B dome (up to 55%). In the case of
this type of dome, the same level of minimum prestress occurs despite the load value or position.
Nonetheless, for each considered dome, at the maximum prestress level S = 50 kN the values
of the natural and free frequencies were comparable (the discrepancy up to 11%).

The dynamic stability analysis showed that the type B domes (RG 6B and MG 6B) are
characterized by wider unstable regions in comparison to type A domes. In the case of the RG
6A and MG 6A domes, the instability regions occur only at the low values of the initial
prestress, and get completely narrow with its increase. In turn, for the RG 6B and MG 6B
domes, the impact of the initial prestress is lower. The number of unstable regions depends on
the number of infinitesimal mechanisms. The type B domes characterized by the higher number
of infinitesimal mechanisms, thus higher number of unstable regions. Additionally, they are
concentrated close to each other, and some of them coincide, which results in a higher risk of
occurring excitation vibrations. The MG 6B dome is the most sensitive to the change in the

resonant frequencies, whereas the MG 6A dome is the least sensitive. It means, the additional
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circumferential cables (MG 6B) introduced a negative impact on the dynamic stability of type
B domes.

The conducted analyses proved that the most optimum solution to be considered is that the
RG 6B dome, which is characterized by the lowest minimum prestress level, and unstable
regions depend on the load value only. It is worth to mention, that the RG 6B dome was patented
by Geiger [115].
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6. Levy domes

6.1. Introduction

Shortly after the first tensegrity dome appeared, Matthys Levy presented a second design.
In 1992, Levy proposed the project of a Georgia Dome in a quasi-linear shape for the Atlanta
Olympic Games [139]. Unlike the Geiger dome, Levy’s dome was a triangular dome in which
cables and struts were not in the same plane. The Georgia Dome was called the first Hypar-
Tensegrity Dome [193]. The structure with a 233.5 m span, consisted of a triangulated network
of cables attached at strut nodes (Fig. 6.1). The characteristic design of Georgia Dome generated
a lot of interest in the scientific world. The analysis of this structure was the main topic of
different research [76, 140, 194].

o -_+- ——
T - s
crf( i

2
~ =

e

Fig. 6.1. Design of a Georgia dome [195]: a) 3D view, b) plan view, c) load-bearing girder

The original Levy’s structure was modified by different researchers in order to perform the
analysis of a new form of cable-strut dome. The shape was simplified to the regular dome-like
structure and the upper section was presented in the form of a single strut or an open hoop,

retaining the original triangulated network of cables (Fig. 6.1).
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Fig. 6.2. Design transformations of Levy dome: a) shape presented by [85], b) shape presented by
[196], c) shape presented by [197], d) shape presented by [198]

Due to complex geometry and statically indeterminacy, the main challenge in the analysis
of the Levy dome is a calculation of the correct force distribution in the elements. A lot of
research focused on this problem and several solutions were introduced. Dong et al. presented
the nodal equilibrium equations-based method [199], the method based on the linear adjustment
theory was proposed by Zhang et al. [196], as well as the DSVD (Double Singular Value
Decomposition) method by Yuan et al. [180], and others [168, 181, 200, 201]. Further research
was concerned with collapse resistance [186, 202, 203], design optimization [187, 204, 205],
and the influence of different kinds of external loads [185, 206]. Most of the papers are
subjected to the experimental studies of the Levy dome, e.g., shape forming process [85, 174],
active control [197, 207], and new structural solutions [198, 208]. Unlike the Geiger dome, the
static and dynamic analysis of the Levy dome is the subject of a few numbers of papers. Among
others, the static analysis was considered in [209-211], and the dynamic analysis in [202, 204,
212].
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This work aims to present the results of a complete static and dynamic analysis of the Levy
dome. This type of cable-strut domes consisted of a system of repeating spatial load-bearing
girders connected with lower circumferential cables. The domes with different geometry of a
load-bearing girder and different numbers of load-bearing girders are concerned. Similarly to
the Geiger dome, the girder is presented in two variants, i.e., close upper section (type A) and
open upper section (type B). The names of analyzed domes are acronyms: L — Levy dome, the
number — the number of load-bearing girders, and letter A or B — girders type, e.g., “L 6A” is

the Levy dome with 6 load-bearing girders type A.

6.2. Geometrical design

Unlike the Geiger dome, the Levy dome consists of uniformly distributed spatial load-
bearing girders. The proposed geometrical designs include the own solutions (section 6.2.1)
and solutions known from the literature (section 6.2.2). Only the first ones are the subject of

further static and dynamic analysis.

6.2.1. Proposed design solutions

The first proposed design covers the geometry of small-scale domes. In contrast to small-
scale Geiger domes, the elements of the load-bearing girder are not in the same plane. The
elements are divided into three groups, i.e., grid cables (elements: 1, 2, 3, 4, 5, 6),
circumferential cables (C1, C2, C3, C4), and struts (S1, S2, S3). Fig. 6.3 presents the geometry
of a repetitive spatial load-bearing girder of a Levy dome with a closed upper section (type A)
(Fig. 6.3a), and an open one (type B) (Fig. 6.3b). The node coordinates of girders are presented
for domes type A (Table 6.1) and type B (Table 6.2). The considered domes are 12 m wide and
3.25 m heigh. The support is in every node of the lowest section of girder. The geometry of a
Levy dome is significantly different from regular Geiger domes. The hoops are rotated relative
to each other, so the struts are not located in one plane. The cables create a network of spatial
triangles connected with struts. The geometry of Levy dome type A and B, consisted of six
load-bearing girders is presented in Fig. 6.4. The additional modification of the geometry is an
increase in the number of load-bearing girders. The domes with 8, 10, and 12 girders are also
considered (Fig. 6.5).
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a)
Fig. 6.3. Load-bearing girder of the Levy dome: a) type A, b) type B
Table 6.1. Node coordinates [m] of the load-bearing girder of the Levy dome type A
No. off - 2 3 4 5 6 7 8 9
node
X 0 2 4-cosa 6 4-cosa
y 0 0 4 (—sina) 0 4-sina
z 2.1 15 1.85 0.45 1.15 -1.15 0 1.15 -1.15
Table 6.2. Node coordinates [m] of the load-bearing girder of the Levy dome type B
No. of f 2 1* o 3 4 5 6 7 8
node
X 0.5-cosa 0.5-cosa 2 4-cosa 6 4-cosa
y 0.5 sina 0.5 (—sina) 0 4 (—sina) 0 4-sina
Z 2.1 15 2.1 15 1.85 0.45 1.15 -1.15 0 1.15 -1.15
Note! Calculations must be performed in radians.
where ng — number of girders, and « is calculated as:
Aadd 360
a=mng—1)agq+ aT’ Aada = (E)/wo " (6.1)
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Fig. 6.4. Levy dome: a) 6A, b) 6B

Lo\

d)

Fig. 6.5. Levy dome: a) 8A, b) 10A, c) 12A, d) 8B, e) 10B, f) 12B

6.2.2. Solutions from the literature
The examples of the Levy dome presented in the literature contain different solutions for
the load-bearing girder and cable system. Three examples of domes with different geometry are
shown. Firstly, the dome presented by Chen&Feng [212] (Fig. 6.6) is considered. The structure
is a large-span dome with a width of 100 m and a height of 8.2 m, consisted of 12 spatial load-
bearing girders, and the open upper section of the girder (L 12B). Unlike the solution presented
in 6.2.1, some groups of elements are divided into subgroups (groups of elements 6 and C) (Fig.
6.6b). The node coordinates for the load-bearing girder are presented in Table 6.3.
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6. Levy domes

Fig. 6.6. Levy dome by [212]: a) geometry of a girder, b) 3D view, c) top view

Table 6.3. Node coordinates [m] of the load-bearing girder of the Levy dome by [212]

l\:; dgf 1 2 3 4 5 6 7 8 9
X 5 20 33.81 50 33.81
y 0 0 9.1 0 9.1
7 82 | 32 | 62 0 32 | 54 | o0 32 | 54

The second example is dome presented by Yuan et al. [180] (Fig. 6.7). The analyzed dome
is 80 m wide and 9.8 m high, consists of six load-bearing girders, with closed upper section (L
6A). The structure is supported in every external node of the girder.
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Fig. 6.7. Levy dome by [180]: a) geometry of a girder, b) 3D view

The third example is presented by Li et al. [206] (Fig. 6.8). The dome is approximately 1
m wide and 0.2 m high, consists of eight load-bearing girders, with closed upper section (L 8A).
The structure is considered as a prototype for further analyses. The examples provided in the
literature mostly focus on different girder solutions, while the cable network remains the same.
The dimensions of the girder are selected individually by each researcher in terms of the
performed analyses.
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Fig. 6.8. Levy dome by [206]: a) geometry of a girder, b) 3D view

6.3. Qualitative analysis

Like in the case of the Geiger dome, qualitative analysis of the Levy dome relies on the
identification of existing infinitesimal mechanisms and self-stress states. Due to a complex
cable network, the Levy dome is considered as statically indeterminate tensegrity structure. The
identification of self-equilibrium forces is performed using the spectral analysis (section 6.3.1),

and genetic algorithm in comparison to methods from the literature (section 6.3.2).
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6.3.1. Spectral analysis of truss matrices

The spectral analysis of truss matrices allowed to determine the number of existing self-
stress states and infinitesimal mechanisms of Levy domes (see section 4.2.1). The summarized
results for considered structures, i.e., L ngA, L ngB where ng = {6, 8, 10, 12} number of load-

bearing girders, are contained in Table 6.4.

Table 6.4. Results of the qualitative analysis of Levy domes

No. of the No No. of No. of No. of
load-bearing ':gag: of elements struts mechanisms Nos.tgl‘essegl-ir)ess
girders (ng) d.o.f (n) (ns) (nm)
Type A
32 78 85 13 0 7
42 102 113 17 0 11
10 52 126 141 21 0 15
12 62 150 169 25 0 19
Type B
42 42 114 18 1
56 56 152 24 1 9
10 70 70 190 30 1 11
12 84 84 228 36 1 13

The domes type A featured by existence of the self-stress states and absence of
infinitesimal mechanisms. The number of infinitesimal mechanisms of dome type B is always
one, regardless the number of girders. The number of existing self-stress states for both dome
types is depending on number of load-bearing girders and can be calculated as:

type A: nst = ns — 6;
(6.2)
typeB: nst=ns—-2-ng+1

The superimposed self-stress states (Table 6.5) were used for further analysis for Levy
domes. The values of obtained self-stress states were normalized in the way that force in the
longest strut is equal to -1. The infinitesimal mechanism identified in type B domes is located

in the upper section of the dome (Fig. 6.9).
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Table 6.5. Values of self-stress state y of the Levy domes

Type A Type B
el. yS el. yS EI. yS el. yS el. yS EI. yS
—0.1472; 0.1972; 1.040©) —0.0312; O.lOOEZ 1.040©)
-0.308 0.311 1.753® -0.050 0.157 1.753®
SL o465 | 1 | 0375w | €1 | 240100 | ST | gos1 | 1| 01890 | C | 240100
-0.6161? 0.4141? 3.0162 -0.0681? 0.209¢2 3.016"2
-0.1612; 0.14223 0.336© -0.16121 0.07322 0.336©
-0.218 0.224 0.691® -0.218 0.114 0.691®
S2 | 02481 | 2 | 027000 | € | 103200 | 52 | 024800 | 2 | 013700 | €2 | 103200
-0.26412 0.29812 1.35942 -0.26412 0.151(2 1.35942
0.295© 0.295© 0.109®
3 | 0.3720 3 | 03720 0.2520
s3 | -1.000 4 | oa05w | 4 S3 | -1.000 4 | 04060 | 3 | 020600
0.42402) 0.42412 0.53412
1.4910 1.4910 0.1540
5 | 1.303® 5 | 1.303® 0.353®
6 | 1.20400 | ©O 6 | 1.2041 | 4 | 055400
1.14742 1.14712 0.74812

© dome with 6 girders; ® dome with 8 girders; ‘% dome with 10 girders;

12 dome with 12 girders

Fig. 6.9. Form of infinitesimal mechanism of L 6B dome: a) 3D view, b) top view, c) side view
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The qualitative analysis of Levy domes determined following tensegrity features, i.e., the
dome is a truss (T), with a continuous net of tensed cables (C), and discontinues net of
compressed struts (D) surrounded by cables, and it features the existence of the self-stress state
(SS) and infinitesimal mechanism (M) (only in case of dome type B). Nonetheless, not every
existing self-stress state stiffens the mechanism and a superimposed self-stress state must be
introduced to the structure. Therefore, the analyzed Levy domes type A are classified as
structures with tensegrity features class 2, and Levy domes type B are classified as structures

with tensegrity features class 1.

6.3.2. Genetic algorithm
The qualitative analysis of the Levy type B dome (L 12B) (Fig. 6.6) was also performed
using the genetic algorithm. A set of self-equilibrated forces was described using the procedure
presented in Section 4.2.2. Two series of calculations are performed using the following
parameters:
—  population size: 1000 (Series 1), 1100 (Series 2),
number of generations: 100 (Series 1), 150 (Series 2),

solutions in the population: 200 (Series 1), 250 (Series 2),
— number of genes: equals the number of groups of elements.
The values obtained by the genetic algorithm were compared to the exact values from the
spectral analysis (section 6.3.1), and the one presented by Chen&Feng in [212]. Summarized
results are provided in Table 6.6. The original values from the paper (Original) were normalized

(Norm.) in such a way that the value in the longest strut is equal to -1 for comparison.

Table 6.6. Values of self-stress state of the Levy dome obtained by different methods

Groups Chen & Feng [212] Present Study
of o Relative] EXact | GA |Relative| GA | Relative
Elements Original | Norm. )
Error | solution |Series 1| Error |geries 2| Error
1 392 1.285 23% 1.044 | 0431 | 59% | 0.675 35%
2 248 0.813 15% 0.704 | 0.459 | 35% | 0.390 45%
3 644 2111 | 105% 1.032 | 0525 | 49% | 0.627 39%
4 688 2256 | 133% | 0.969 | 0.962 1% 0.963 1%
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Table 6.6. Values of self-stress state of the Levy dome obtained by different methods - Continued

Groups Chen & Feng [212] Present Study
of o Relative] EXact | GA |Relative| GA | Relative
Elements Original | Norm. ]
Error | golution | Series 1| Error |geries2| Error
5 1343 4.403 57% 2.809 2097 | 25% | 2.234 20%
a 276% 0.786 0.190 | 76% | 0.281 64%
6 901 2.954
b 12% 2.639 2.805 6% 2.934 11%
a 47% 3.644 2.664 | 27% | 2.916 20%
C1 1637 5.367
b 8% 4.986 4.542 9% 4.874 2%
C2 1307 4.285 37% 3.124 3.067 2% 3.093 1%
C3 469 1.538 15% 1.333 0.884 | 34% | 0.727 45%
C4 750 2.459 23% 2.000 0.838 | 58% 1.282 36%
S1 =52 —0.170 | 23% —0.138 | —0.074 | 46% | —0.083 40%
S2 —126 —0.413 20% —0.345 | -0.289 | 16% | —0.270 22%
S3 =305 —1.000 0% —1.000 | —-1.000 | 0% | —1.000 0%

The values provided in [212] are not meeting the criteria of the node equilibrium, and the
relative errors are up to 276%. The differences may occur due to a different classification of
groups of elements. In the case of the genetic algorithm, the accuracy of the obtained results is
highly dependent on the parameters of the algorithm, higher convergence could be achieved by
increasing these parameters. Obtained values are considered satisfactory in the case of second
series, and meet the requirement of stable equilibrium (the equilibrium of nodes is close to

zZero).

6.4. Quantitative analysis

The quantitative analysis of Levy domes examines the influence of the initial prestress

level on the behaviour of the structure under external load. As in the case of the Geiger dome,
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the material properties and cross-sections of the elements are essential for consideration. It is
assumed that cables are made of steel S460N. The “Type A” cables with a Young modulus of
210 GPa [192] are used. The struts are made of hot-finished circular hollow sections (steel
$355J2) with a Young modulus of 210 GPa. The density of steel is equal p = 7860 kg/m3.

The quantitative analysis is performed in terms of static, dynamic, and dynamic stability
analyses. Each type of the analysis concerns the small-scale domes. Static analysis is performed
for the small-scale domes consisted of six load-bearing girders (section 6.2.1). The qualitative
analysis of small-scale domes, i.e., identifying existing self-stress states and infinitesimal
mechanisms was performed in Section 6.3.2. Dynamic analysis concerns domes consisting of
different numbers of load-bearing girders, i.e., 6, 8, 10, and 12 girders. In turn, dynamic stability
analysis is provided for small-scale Geiger domes considered in the static analysis.

The consideration of small-scale domes includes two variants of the geometry, i.e., L 6A
and L 6B (Fig. 6.4). The cables with the diameter ¢ = 20 mm and load-bearing capacity Np,; =
110.2 kN are taken into account. For struts, there are rods with a diameter ¢ = 76.1 mm and
thickness t = 2.9 mm with lengths 0.6 m, 1.4 m, and 2.3 m and load-bearing capacity Nz =
224.3 kN, 170.5 kN, and 107.1 kN respectively. The external load is considered in different
positions, e.g., in P®, where i =1,2,3 (Fig. 6.10), and different values, i.e., P® =
{1 kN, 5KkN}. Similarly to the Geiger dome, the minimum prestress level of the Levy domes is
highly dependent on the load value and position (Table 6.7). In turn, the value of the maximum
prestress level (S,,4,) depends on the load-bearing capacity of the most stressed elements. For
all structures, it was assumed as S,,,4, = 50 kN. The maximum effort of cables is W4, c =0.7,

and the maximum effort of struts is W4, s = 0.48.

b) >~
c/“’T P”’l‘/' ) Pi‘," ]
’ tl - -I pe) 2
,T:/‘:‘ ]r/rl

Fig. 6.10. Position of the external load on the girder: a) type A, b) type B
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Table 6.7. The S,,,;,, values for Levy domes under external load

Load value Load value
P =1kN P =5KkN P =1kN P =5kN
Load position Load position Load position Load position
A PO | p@ | p® | pO | p@ | pB PO | p@ | p® | pO | p@ | pB)
Smin [kN] Smin [kN] Smin [kN] Smin [kN]
4 9 1 18 42 5 22 10 3 - 50 12
A—type A, B-type B
Note!

In the case of the Levy dome, selected profiles were not sufficient to identify the S,,,;,, level
for the load position P (for P = 5 kN), and S,,,;;, = Sy fOr the load position P3 (for P =
5 kN). It was decided to increase the cross-section of the elements. The cables with the diameter
¢ = 27 mm and load-bearing capacity Np; = 206.7 kKN were selected instead. For struts, there
are rods with a diameter ¢ = 82.5 mm and thickness t = 3.2 mm with lengths 0.6 m, 1.4 m,
and 2.3 m and load-bearing capacity Nzg; = 297.6 kN, 233.4 kN, and 154.0 kN respectively.
For all structures, it was assumed as S, 4, =120 KN. The maximum effort of cables is W,,qxc =
0.9, and the maximum effort of struts is W,,,, s = 0.48. Further analysis was carried out using

updated cross-sections.

Table 6.8. The updated S,,;,, values for Levy domes under external load

Load value Load value

P =1kN

P =5kN

P=1kN

P =5kN

Load position

Load position

Load position

Load position

A PO | pP@ | p® | pO | p@ | PG PO | p@ | pBO | pO | p@ | PG
Smin [kN] Smin [kN] Smin [kN] Smin [kN]
4 9 1 18 42 5 22 10 3 95 50 12

A—type A, B-type B

Additionally, the static analysis of the realistic-scale Levy dome is performed. The
realistic-scale dome geometry was obtained by the rescaling of the small-scale dome, and
resulted in the same self-stress values (Table 6.5).

In the charts the following symbols are used: Il — second-order theory, Il — third-order
theory, 1 — external load equal to 1 kN, 5 — external load equal to 5 kN, s — struts, ¢ — cables, A
— type A, B — type B, L1 — realistic dome with symmetrical load, L2 — realistic dome with
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6. Levy domes

asymmetrical load. The caption “A 1(II)” stands for the Levy dome type A loaded with force 1
kN analyzed using the second-order theory, and “L1 (II)” stands for the Levy dome with

symmetrical load analyzed using the second-order theory.

6.4.1. Static analysis of small-scale domes

Similarly to the Geiger dome, static analysis of the Levy domes concerns the impact of the
initial prestress on the behaviour of the structure under time-independent external load.
Particularly, the displacements (q,,q,), maximum effort of structure W,,,, and stiffness
parameter GSP are studied under the influence of the prestress. The displacements are measured
for the node located on the girder opposite to the location of the loaded node (node d depends
on the position of load) (Fig. 6.10). The examples provided below are to compare the static
response of the L 6A and L 6B domes in the case of different load positions. Firstly, the load
position PM is considered (Example 1), then the load position P (Example 2), and finally
the load position P®) (Example 3).

Example 1

Subject of the comparison: L 6A (Fig. 6.11a) and L 6B (Fig. 6.11b) domes, load position P(*)

— behaviour under the external load

Aim of the comparison: (1) Whether the design solution (close or open upper section) of the

structure matter in the case of load position PM? (2) Which dome (Geiger or Levy) is more

sensitive in the case of the load position P(MW?

a) L 6A b) L 6B
P=1kN - S, = 4kN P=1KkN - Sy, = 22kN
P=5kN - Sy, = 18kN P=5kN = Spin = 95 kN

pi e\

Fig. 6.11. External load application in the case of position P(Y for: a) L 6A, b) L 6B
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The first considered example examines the influence of the initial prestress on the static
parameters in the case of the load position P(Y). The external load is located in the upper section
of the dome, i.e., where the infinitesimal mechanism is located for the dome type B. The impact
of the initial prestress on the plane displacement q,, (Fig. 6.12) and vertical displacement g,
(Fig. 6.13) is considered. In the case of the dome type A, the displacements are insensitive to
the change in the prestress. The situation is opposite for the dome type B. The influence of the
initial prestress level is nonlinear. The results obtained from the second-order theory and third-
order theory are convergent only for the lower load in the high prestress range (S = 70 +
120 kN). It is worth mentioning, that increasing of the external load results in the change of the
direction of the plane displacement g,, (Fig. 6.12b). The influence of the initial prestress level
on the maximum effort of elements W,,,, (Fig. 6.14) is linear for both structures. The GSP
parameter of the dome type A (Fig. 6.15a) is constant at value 1 and is not depending on the
prestress. For the dome type B (Fig. 6.15b), the relation between GSP parameter and initial
prestress level is linear. The increasing in the external load results in the decrease of the stiffness
of the structure up to 60% (for S = 120 kN).

a) b)
--m--A 1(11) --m--A 5(11) --m--B 1(Il) --m--B 5(Il)
—=— A 1(111) —=—A5(111) —=—B 1(I1) —=—B5(1l)
0.3 0.3
—_ —_ L™
= € B =
£ 01 £ o1 ~
> e >
£-01 g 01
& &
203 g 03
o o + --
2 2 -
0-05 A 05 M
0.7 -0.7
0 10 20 30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100110120
S [kN] S [kN]

Fig. 6.12. Impact of the initial prestress S on the displacement g,, in the case of the load position
PD for: a) L 6A, b) L 6B
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a) b)
-a--A1(ll) -a--A5(1l) -a--B 1(I1) -a--B 5(I1)
—=—A1(lI) —=—AS5(Il) —=—B 1(I11) —=—B 5(I1)
15 15
€ 1.2 E 12
E 1 E ]
& 0.9 & 09
g £ .1
£ 06 g 06
g g 1
© T
2 03 s 03 1
2 00 Q 90
-0.3 - -0.3
0 10 20 30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100110120
S [kN] S [kN]

Fig. 6.13. Impact of the initial prestress S on the displacement g, in the case of the load position
PO for: a) L 6A, b) L 6B

a) b)
—a—A1(c) -m- A1(s) —a—B 1(c) -m- B1(s)
—a—A5(C) -m A5(s) —=—B 5(c) -m B5(s)
1.0 1.0
0.8 0.8
0 T
= 06 = 06
£ ) £
= y # = /
0.2 '{( - 0.2 e
OO A T T 00 T
0 10 20 30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100110120
S [kN] S [kN]

Fig. 6.14. Impact of the initial prestress S on the maximum effort of structure W, in the case of
the load position P( for: a) L 6A, b) L 6B

a) b)
A1l -a-AS5 -=B1 -=B5
35 35 )
3.0 3.0 /
L o, - 25
o o
wn + w
(O] O
2.0 2.0
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10 +tmm——— T = 1.0 t ﬂ/’/f
0 10 20 30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100110120
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Fig. 6.15. Impact of the initial prestress S on the GSP parameter in the case of the load position PV
for:a) L 6A, b) L 6B
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Conclusion of the comparison: The load positioned in the upper section is significant for the

Levy dome type B due to a localization of the infinitesimal mechanism (Fig. 6.9). Unlike the
dome type A, the L 6B dome is sensitive to the change of the initial prestress level and external
load. Comparing the behavior of the Geiger dome and Levy dome for the same load position
(section 5.4.1: Example 1), it can be noticed that Levy dome type A behaves similarly to the
Geiger domes RG 6A and MG 6A, i.e., the prestress has no impact on the displacements or
stiffness of the structure. The Levy dome type B is characterized by a high impact of the initial

prestress level and bigger displacements.

Example 2

Subject of the comparison: L 6A (Fig. 6.16a) and L 6B (Fig. 6.16b) domes, load position P(?

— behaviour under external load

Aim of the comparison: Whether the design solution (close or open upper section) of the

structure matter in the case of load position P(? (2) Which dome (Geiger or Levy) is more

sensitive in the case of the load position P()?

a) L 6A b) L 6B
P=1KkN > S,;, = 9kN P=1KkN > S,;, = 10kN
P=5KkN > S,;, = 42kN P=5kN - S, = 50 kN

Fig. 6.16. External load application in the case of position P for: a) L 6A, b) L 6B

The second example considers the load position P(®). The consideration includes the
impact of the initial prestress level on the plane displacement g, (Fig. 6.17) and vertical
displacement g, (Fig. 6.18). In contrast to Example 1, the biggest displacements are obtained
for the L 6A dome, whereas the displacements of the L 6B dome are almost constant and
insensitive to the change in the external load. The results obtained using second-order theory

and third-order theory are fully convergent for both domes. The influence of the initial prestress
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level on the maximum effort of structure W,,,, (Fig. 6.19) is linear, as well as on the GSP
parameter (Fig. 6.20). Nevertheless, for the L 6B dome and P =1 kN (Fig. 6.20b) the

nonlinearity can be noticed and the graph has a reverse behaviour. The increasing of the external

load resulted in the decreasing of the stiffness up to 7% and 17%, for L 6A and L 6B domes

respectively.
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.17. Impact of the initial prestress S on the displacement g, in the case of the load position
P@ for: a) L 6A, b) L 6B
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Fig. 6.18. Impact of the initial prestress S on the displacement g, in the case of the load position
P@ for: a) L 6A, b) L 6B
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a) b)
—a—A 1(c) -m- A1(s) —=—B 1(c) -m- B1(s)
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Fig. 6.19. Impact of the initial prestress S on the maximum effort of structure W, in the case of
the load position P® for: a) L 6A, b) L 6B
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Fig. 6.20. Impact of the initial prestress S on the GSP parameter in the case of the load position P(?)
for:a) L 6A, b) L 6B

Conclusion of the comparison: Despite the absence of the infinitesimal mechanism in the L 6A

dome, the influence of the initial prestress level on the displacements and stiffness of the
structure can be noticed. Because the load is positioned further away from the localization of
the mechanism (Fig. 6.9), the L 6B dome is almost insensitive to the change in the initial
prestress, and displacements are considerably lower in comparison to the L 6A dome.
Nonetheless, Geiger domes are more sensitive to the change in the initial prestress level, i.e.,

characterized by bigger displacements and higher stiffness of the structure.
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Example 3

Subject of the comparison: L 6A (Fig. 6.21a) and L 6B (Fig. 6.21b) domes, load position P

— behaviour under external load

Aim of the comparison: Whether the design solution (close or open upper section) of the

structure matter in the case of load position P®)? (2) Which dome (Geiger or Levy) is more

sensitive in the case of the load position P®)?

a) L 6A b) L 6B
P=1kN - S,,;, =1kN P=1kN - S, =3 kN
P=5kN - S,,in =5kN P=5kN - S,;, = 12kN
= R
& l’ X\ <. ] [ 3K #;:tll—!}:: =S ‘l >
]' | ME) [ 7

Fig. 6.21. External load application in the case of position P® for: a) L 6A, b) L 6B

The third example focuses on the influence of the initial prestress in the case of the load
position P®). In this situation, the external load positioned furthest from the localization of the
infinitesimal mechanism in the L 6B dome. The impact of the initial prestress on the
displacements q,, (Fig. 6.22) and q, (Fig. 6.23) is considered. Similarly to the Example 2, the
L 6A dome is characterized by biggest displacements, nonetheless, the displacements are even
three times smaller than in the Example 2. The influence of the initial prestress is linear. In the
case of L 6B, the displacements are almost constant, insensitive to the change in the external
load and initial prestress level. The maximum effort of structure W,,,,, (Fig. 6.24) and the GSP
parameter (Fig. 6.25) have linear behaviour as well. The increase in the external load is not

affecting the stiffness of the structure, which remains on the same level GSP = 1.07 + 1.14.
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Fig. 6.22. Impact of the initial prestress S on the displacement g,, in the case of the load position
P® for: a) L 6A, b) L 6B
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Fig. 6.23. Impact of the initial prestress S on the displacement g, in the case of the load position
P® for: a) L 6A, b) L 6B
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Fig. 6.24. Impact of the initial prestress S on the maximum effort of structure W, in the case of
the load position P® for: a) L 6A, b) L 6B
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Fig. 6.25. Impact of the initial prestress S on the GSP parameter in the case of the load position P®)
for:a) L 6A, b) L 6B

Conclusion of the comparison: Despite the fact that L 6B dome is characterized by the self-

stress state and infinitesimal mechanism, in the case of external load position P, the initial
prestress has almost no impact on the static parameters of the dome, as well as external load
value. In turn, the Geiger dome with the same load conditions is characterized by the higher

sensitivity to the change in the initial prestress level.

6.4.2. Static analysis of the realistic-scale dome

The one geometry is chosen for the realistic-scale dome, i.e., realistic-scale type A Levy
dome consisted of six load-bearing girders (L 6A) (Fig. 6.4a). The dome is 20 m wide and 3.5
m high (Fig. 6.26). The structure consists of 85 elements, i.e., 13 struts and 72 cables. The struts
are designed as tubes CHS 108x4.5. Due to the different lengths, the struts were divided into
three groups, i.e., six struts of 3.83 m length, six struts of 2.33 m length, and one strut of 1 m
length, with the maximum load-bearing capacity of Np; = 224 kN, 402 kN, and 499 kN,
respectively. In turn, the cables are assumed to be made of “D36” with a maximum load-bearing
capacity of Np; = 367.5 kN. The external load application and value was the same as in the
case of realistic Geiger dome (section 5.4). The load was applied symmetrically (L1) (Fig.
5.30a) and asymmetrically (L2) (Fig. 5.30b). The minimum prestress level for the dome is equal
to S,,in= 11 kN, whereas the maximum prestress level was assumed as S, = 190 kN. The

maximum effort of structure is W, =0.91.
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Fig. 6.26. Load-bearing girder of the realistic Levy dome: a) cross section, b) 3D view

As in the case of the Geiger dome, the impact of the initial prestress level S on the
displacements g, and g, of the top node 1 (Fig. 6.26), maximum effort of structure W,,,,,, and
stiffness parameter GSP of the realistic Levy dome is considered.

Unlike the Geiger dome, the impact of the initial prestress level on the plane displacement
q, (Fig. 6.27a) is linear, and on vertical displacement g, (Fig. 6.27b) — is absent. The results
obtained using the second-order theory and third-order theory are fully convergent even at the
low levels of initial prestress. The asymmetrical load type (L1) affects only the plane
displacement g,,, whereas vertical displacements are insensitive to the load type. The maximum
effort of the structure W,,,, (Fig. 6.27) increased linearly, the effort for both load types is the
same. The GSP parameter, on the other hand, depend on the external load nature. Comparing
to the Geiger dome, the stiffness is significantly lower, i.e., GSP = 7 and GSP = 1.23, for
Geiger and Levy dome respectively (in the case of asymmetrical load). The decrease is up to

82%. In the case of symmetrical load, the GSP parameter is constant at value 1.

a) b)
--&--L1 (1) -m--L2 (Il S [kN]
A —a—L1 (1) —=—L2 (1) . 10 30 50 70 90 110 130 150 170 190

Displacement, g, [mm]
N

Displacement, g,[mm]
N

0 -4
10 30 50 70 90 110 130 150 170 190 --a--L1 (1) --m--L2 (1)
S [kN] —a—L1(IN) ——L2 (1)

Fig. 6.27. Impact of the initial prestress S on the displacement: a) q,., b) g,
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Fig. 6.28. Impact of initial prestress S on the: a) maximum effort of structure Wy, ;,, b) GSP
parameter

Due to a lack of the infinitesimal mechanism, the considered Levy dome is insensitive to
the change in the initial prestress level. The impact of the different types of external load is
significantly lower comparing to the Geiger dome. The analysis can be carried out using the
second-order theory.

6.4.3. Dynamic analysis

The dynamic analysis of Levy dome concerns the impact of the initial prestress level on
natural and free frequencies of the structure. The section is divided onto analysis of natural
frequencies correspond to the infinitesimal mechanism (Example 1), additional natural

frequencies that depend on the initial prestress (Example 2), and free frequencies (Example 3).

Example 1

Subject of the comparison: L ngA, L ngB domes (ng = {6,8,10,12}) - natural frequency

correspond to the infinitesimal mechanism

Aim of the comparison: (1) How does the initial prestress level impact the natural frequency

correspond to the infinitesimal mechanism? (2) Whether the number of load-bearing girders
impacts the natural frequency corresponding to the infinitesimal mechanism? (3) How does the

design solution (open or closed upper section) impact the dome behaviour?

The analysis concerns the small-scale Levy domes from the section 6.4.1. Considered
structure consist of different number of load-bearing girders (ng), i.e., ng = {6,8,10,12}. The

qualitative analysis, i.e., the identification of self-stress states and infinitesimal mechanisms,

115



6. Levy domes

was performed in section 6.3.1. In the case of type A Levy domes (L ngA) the number of
infinitesimal mechanisms (nm) is equal to zero. In turn, the L ngB dome characterized by one
natural frequency f1 that correspond to one infinitesimal mechanism. Fig. 6.29 presents the
influence of the initial prestress level on the first natural frequency f1 of considered domes.
The first natural frequency f1 of type A domes is not related to the mechanism and the absence
of the initial prestress is not equal to zero natural frequency. Thus, the increasing of the initial
prestress level causes small linear increasing of natural frequencies L ngA domes. It is worth
to mention, the natural frequencies f1 for domes with 8, 10, and 12 load-bearing girders remain
on the same level f1 = 16.5 <+ 18.3 Hz. In turn, for the L 6A dome it equals f1 = 12.8 +
13.7 Hz (Fig. 6.29a).

For the domes type B, zero prestress (S = 0) results in zero frequencies (Fig. 6.29b). The
increase in the number of load-bearing girders affecting only natural frequencies related to the
infinitesimal mechanism, and the impact of the initial prestress level is nonlinear. The
discrepancy between the first natural frequency f1 values is around 11 = 12 Hz for S,,4,. IN
the case of S = 0, the forms of vibrations realize the forms of infinitesimal mechanisms. Fig.

6.30 presents forms of vibrations of the Levy domes type B.

a) b)
50 50 -
40 40 4 ]
= 30 — 30 =
| S
2 s’ -2
Rl PP S S S = D14 -t l U
B s St et SULES 4 [/ ,+r kT
10 10 1497 -
-
0 0 —
0 10 20 30 40 50 0 10 20 30 40 50
S [kN] S [kN]
---fL(L6A) --o--f1(L8A) --a--f1(L6B) --e--f1(L 8B)
f1 (L 10A) --e--f1 (L 12A) f1 (L 10B) --e--f1 (L 12B)

Fig. 6.29. Influence of the initial prestress S on the first natural frequency f1 of: a) L ngA, b)
L ngB,
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Fig. 6.30. Forms of vibrations for the L ngB dome: a) L 6B, b) L 8B, ¢) L 10B, d) L 12B

Conclusion of the comparison: The natural frequency corresponding to the infinitesimal

mechanisms is characterized by a high sensitivity to the change in the initial prestress level.
Additionally, the impact of the prestress is nonlinear. The number of load-bearing girders
affects only the first natural frequency f1 of the type B domes (open section).

The first natural frequency f1 of the type A dome remains on the similar level, nonetheless
small linear impact of the initial prestress level is present. Only the increasing of the number of

load-bearing girders from six to eight effected the first natural frequency f1 of the type A dome.

Example 2

Subject of the comparison: L ngA, L ngB domes (ng = {6,8,10,12}) - additional natural

frequencies dependent on the initial prestress level

Aim of the comparison: (1) Whether the initial prestress level impacts the next natural

frequencies that not correspond to the infinitesimal mechanism? (2) Whether the number of

load-bearing girders impacts the natural frequencies that not correspond to the infinitesimal
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mechanisms? (3) How does the design solution (open or close upper section) impact the dome

behaviour?

The natural frequencies of the type A Levy domes do not correspond to the infinitesimal
mechanisms, and the next natural frequencies (f2, f3, f4, f5) were considered for this
example. As in the case of the type A Geiger domes, the type B Levy domes (L ngB) are
characterized by additional natural frequencies depending on the initial prestress level. The

number of dependent frequencies f;,:q; depends on the number of girders (ng):

frotat = fam t+ faada; faaa = (ng — 4) (6.3)
a) b)
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Fig. 6.31. Influence of the initial prestress S on the natural frequencies f of: a) L 6A, b) L 8A,
c) L 10A, d) L 12A
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Fig. 6.32. Influence of the initial prestress S on the natural frequencies fy,.,, faaq, and
frotar+1 OF: @) L 6B, b) L 8B, c) L 10B, d) L 12B

Fig. 6.31 and Fig. 6.32 present the natural frequencies of Levy domes. The L ngA
domes natural frequencies are not corresponded to the mechanism, yet a small linear
dependency on the initial prestress level can be noticed (Fig. 6.31). The number of load-bearing
girder also effects the value of natural frequencies. As in the case of the Geiger domes, some
frequencies characterized by same values but different forms of vibrations. The influence of the
initial prestress is higher for higher frequencies.

In turn, the natural frequencies of the L ngB domes depend nonlinearly on the initial

prestress level (Fig. 6.32). The first frequency is the one corresponding to the infinitesimal
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mechanism (f,,,), next are that additional dependent on the prestress (f,qq), and first
independent of prestress (fotai+1)- Similarly to the Geiger domes, in the case of zero prestress
(S = 0), the frequency f,,., is equal to zero, and after introducing prestress S the values f,,,,
increase in nonlinear way. For the frequencies f,44 the absence of prestress is not resulted in
zero values and the frequencies also increase nonlinearly. Nonetheless, nonlinearity and
sensitivity to the changes in the initial prestress decreases for the higher frequencies. The value

of the first independent frequency is on the similar level f;,tq14+1 = 18.4 Hz =+ 23.9 Hz.

Conclusion of the comparison: In the case of type A Levy domes (L ngA) all natural

frequencies characterized by the small linear dependency on the initial prestress level.
In turn, for the L ngB domes, the number of additional natural frequencies that depend
on the initial prestress level highly depend on the number of load-bearing girders.

Example 3

Subject of the comparison: L 6A, L 6B domes - free frequencies

Aim of the comparison: (1) How does the initial prestress level impact free frequencies? (2)

How do the value and position of load impact free frequencies?

The analysis of free frequencies of the Levy domes contains results for first frequency
f1(P) of L 6A dome (Table 6.9) and L 6B dome (Table 6.9). In the case of L 6A dome, the
values of natural frequency f; (0) and free frequencies f; (P) are identical for each case of load
value and position. The lowest values of the S,,,;,, are noticed for the load position P In turn,
for the L 6B dome, the lowest values of the S,,,;,, are for the load position P( (the localization
of the infinitesimal mechanism). The further the load from this position, the higher the value of
the minimum prestress level.

The biggest discrepancy between natural and free frequencies is noticeable for the L 6B in
the case P = 5 kN. Depending on the position, it is approximately 2%, 12%, or 4% (for P("),
P@ and P® respectively), in the case of minimum prestress level S,,;,,. The increasing of the
initial prestress level results in the convergence of the values of natural and free frequencies. In
the case of the prestress level S = 100 kN, the difference is around 0.3%, 6%, and 1% (for P,
P@®, and P® respectively). In turn, for the S = 120 kN values are fully convergent for each

load value and position.
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Table 6.9. First natural f;(0) and free f;(P) frequency [Hz] for the L 6A dome

¢ fi(P)
. £(0) PO P® P®
1kN | 5kN | 1kN | 5kN | 1kN | 5kN
0 12.84
1 12.86 12.86
4 1291 | 1291 12.91
5 12.92 | 12.92 12.92 12.92 | 12.92
9 12.99 | 12.99 12.99 12.99 | 12.99
10 | 13.01 | 13.01 13.00 13.01 | 13.00
18 | 13.14 | 13.14 | 13.14 | 13.14 13.14 | 13.13
20 | 13.17 | 13.18 | 13.18 | 13.17 13.18 | 13.17
30 | 13.34 | 13.34 | 13.34 | 13.34 13.34 | 13.33
40 | 13.50 | 13.50 | 13.51 | 13.50 13.50 | 13.50
42 | 13.53 | 13.54 | 13.53 | 13.54 | 13.52 | 13.53 | 13.53
50 | 13.67 | 13.67 | 13.67 | 13.66 | 13.65 | 13.66 | 13.66
60 | 13.83 | 13.83 | 13.83 | 13.82 | 13.81 | 13.82 | 13.81
70 | 13.98 | 13.98 | 13.98 | 13.98 | 13.96 | 13.98 | 13.98
80 | 14.14 | 14.14 | 14.14 | 1413 | 14.12 | 14.14 | 14.13
90 | 14.29 | 14.29 | 14.29 | 14.29 | 14.27 | 14.29 | 14.36
100 | 14.44 | 14.44 | 14.44 | 14.44 | 1442 | 14.44 | 14.44
110 | 1459 | 1459 | 1459 | 1459 | 1457 | 14.59 | 14.59
120 | 1474 | 1474 | 14.74 | 14.74 | 1472 | 14.74 | 14.73

Table 6.10. First natural f;(0) and free f;(P) frequency [Hz] for the L 6B dome

¢ fi(P)
] £(0) p® p® p®
1kN | 5kN | 1kN | 5kN | 1kN | 5kN
0 0.00
1 2.49
3 4.32 4.23
5 5.57 5.51
10 7.88 7.51 7.84
12 8.63 8.29 8.56 | 8.26
20 11.15 10.88 11.11 | 10.84
22 | 1169 | 11.54 11.38 11.64 | 11.35
30 | 13.65 | 13.53 13.42 13.62 | 13.38
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Table 6.10. First natural f;(0) and free f;(P) frequency [Hz] for the L 6B dome - Continued

¢ fi(P)
. £,(0) p P® p®
1kN | 5kN | 1kN | 5kN | 1kN | 5kN
40 | 15.76 | 15.65 15.55 15.74 | 15.49
48 | 17.25 | 17.17 17.05 | 15.16 | 17.23 | 16.98
50 | 17.62 | 17.53 17.41 | 1553 | 17.59 | 17.34
60 | 19.31 | 19.22 19.07 | 17.23 | 19.28 | 18.98
70 | 20.85 | 20.77 20.55 | 18.75 | 20.81 | 20.42
80 | 2213 | 22.01 21.81 | 20.11 | 22.08 | 21.66
90 | 23.01 | 2291 22.85 | 21.35 | 22.98 | 22.70
95 | 2344 | 2334|2294 | 23.31 | 21.92 | 23.41 | 23.18
100 | 23.85 | 23.76 | 23.38 | 23.75 | 22.48 | 23.83 | 23.63
110 | 24.57 | 2457 | 24.24 | 24.57 | 23.52 | 24.57 | 24.49
120 | 24.64 | 24.67 | 24.63 | 24.64 | 24.66 | 24.64 | 24.63

Conclusion of the comparison: In the comparison to the type A dome (L 6A), the free

frequencies of the type B dome (L 6B) are highly dependent on the initial prestress level. The
dependency on the load value and position is significant only in low levels of initial prestress,
an increase in the initial prestress level results in a decrease in the sensitivity of the free
frequencies to the load. In the case of type A dome (L 6A), the natural frequencies do not depend

neither on the load value nor the position.

6.4.4. Dynamic stability analysis

The dynamic stability analysis of a small-scale Levy domes is considered. Particularly, the
influence of the initial prestress level on the shape and range of unstable regions is analyzed. A
few examples are provided in order to compare the behaviour of different domes under the
periodic load. Firstly, the case of the load position P (Example 1), next the load position P(®
(Example 2), and the load position P& (Example 3). The consideration is concluded with

summarized results (Example 4).

Example 1

Subject of the comparison: L 6A (Fig. 6.33a) and L 6B (Fig. 6.33b) domes, load position P(*)

— unstable regions
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Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of

load position PM? (2) Does the design solution (close or open upper section) affect unstable

regions in the case of load position P(1)?

a) L 6A b) L 6B
P=1KkN - Spym = 4kN P=1KkN > Sy = 22 kN
P=5KkN - Spim = 18 kN P=5KkN - Sppm = 95 kN
N DS o~ 17!" li A
o <o e

Fig. 6.33. External load application in the case of position P(!) for: a) L 6A, b) L 6B

The first example concerns the impact of the initial prestress level on the unstable regions
of L 6A and L 6B domes, in the case of the load position P, The selected instability regions
are presented for three levels of initial prestress, and two load variants P = 1 kN and P = 5 kN
(Table 6.11). In the case of the L 6A dome, the initial prestress level has no impact on the
resonant frequencies due to the absence of the infinitesimal mechanism, the frequency (n1(A))
remains on the similar level n1 = 25.8 Hz +27.7 Hz. The situation is opposite for the L 6B
dome. The resonant frequency (n1(B)) depend on both the initial prestress level and the external
load. The small instability region can be noticed in the case of load variant P = 5 kN for the
Smin level of initial prestress.

The L 6B dome characterized by the additional resonant frequencies’ dependent on the
initial prestress level (see section 6.4.3). The frequencies n2, 3, n4, and n5 do not depend on
the pulsatility index v, the boundaries of instability regions coincide. Nonetheless, they are
sensitive to change in the initial prestress level (Table 6.12). For the L 6A dome the situation is
similar, however, the dependency on the initial prestress is significantly lover. The relative
increase (RI) of L 6A dome is about 1.08% - 14.18%, while for L 6B it is around 56.64% -
6.19% (in the case P = 1 kN). The increase in the external load led to a decrease in the influence
of the initial prestress. The RI is even five times smaller in the case of load P = 5 kN than for
the P = 1 kN for the L 6B dome (for frequencies n2, n3).
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Table 6.11. Limits of first instability regions of the L 6A and L 6B domes for load position P(*)

Smin(A) = 4 KN S =40kN S = 60 kN
Smin(B) = 22 kN
—*-nl (A) —*nl(B) —*-nl (A) —*nl(B) —*-nl (A) -+l (B)
50 50 50
45 45 45
40 40 40
35 s 35
=30 =30 = 30
1]l St - =25 = 2
KN = 20 20 T 2
15 s Cis
10 10 10
5 5 5
0 0 0
0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75
v[] v[] v[]
Smin(4) = 18 KN Spin + 15 kN Spmin + 25 kN
Smin(B) = 95 kN
~*-nl(A) —*nl(B) —*-nl(A) —*nl(B) —*-nl(A) —*nl(B)
50 i T i i 50 4 50 &
45 45 45
40 'E‘ 40 _ 40
w35 =35 I35
5 2 30 E 30 § 30
25 25 o 25
kN 3 20 +.§ 20 % 20
15 S5 JE15
10 10 =10
5 5 5
0 0 0
0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75
v [ v[] v[]
Table 6.12. Resonant frequencies of the L 6A and L 6B domes in the case of load position P(1
L 6A L 6B
Resonant frequency n(v = 0 + 0.75) = const.
2 | 73 | na | 92 13 4 | 75 | n6
P =1kN
Smin 25.82 81.33 82.67 31.57 32.38 47.93 47.95 74.10
Smax 29.48 82.21 85.97 49.28 50.72 50.90 54.48 74.71
RI* 14.18% | 1.08% 3.99% | 56.10% | 56.64% | 6.19% | 13.62% | 0.82%
P = 5kN
Smin 26.29 81.43 83.09 47.08 47.93 48.91 48.96 74.56
Smax 29.48 82.20 85.99 49.29 50.11 50.98 53.98 74.71
RI* 12.13% | 0.95% 3.49% 4.69% 4.55% 423% | 10.25% | 0.20%

RI* —relative increase: [(1(Smin ) — 1(Smax))/M(Smin) - 100%]
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Fig. 6.34 presents the impact of the initial prestress level on the range and distribution of
instability regions. The results are provided only for the L 6B dome. The instability regions of
L 6A dome are insensitive to the change in the prestress. The increase of the initial prestress
level results in the gradual reduction of the areas of instability regions, however, for the S =
80 kN the unpredictable growth occurs (in the case P = 1 kN) (Fig. 6.34a). In the case of § >
80 kN, the behaviour is the same to the case P = 5KkN (Fig. 6.34b). For both cases, the
noticeable decrease in the area of the unstable region occurs at the level S = 110 = 115 kN.
The decrease is about 66% and 77%, for P = 1 kN and P = 5 kN respectively.

a) b)
1.00 1.00
0.75 0.75
: 0.50 : 0.50
< ~
0.25 0.25
0.00 + + + + + + + + + + + 0.00 + + + + + +
22 30 40 50 60 70 80 90 100 110 120 95 100 105 110 115 120
S [kN] S [kN]
nl nl

Fig. 6.34. Influence of the initial prestress level S on the range of unstable region of: a) L 6B for
P =1kN, b) L 6B for P = 5kN

Conclusion of the comparison: The dynamic stability analysis shows that the behaviour of L

6A and L 6B is completely different. The differences are related to the occurrence of the
infinitesimal mechanisms. Whereas, the increasing of the initial prestress level results in the
increasing of resonant frequencies values and narrowing of the unstable regions of type B dome.
In turn, the type A dome is insensitive to the change. Additionally, the impact of the initial

prestress level is greater as external load increases.

Example 2

Subject of the comparison: L 6A (Fig. 6.35a) and L 6B (Fig. 6.35b) domes, load position P(?)

— unstable regions

Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of

load position P()? (2) Does the design solution (close or open upper section) affect unstable

regions in the case of load position P(2)?
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a) L 6A b) L 6B
P=1kN - S,;, = 9kN P=1kN - S,;, = 10kN
P=5KN = Sy, = 42kN P=5KN - Sy, = 50 kN
- o\ > | 51;”:4@_1;1.;*]
- \ —¥X P BN ). - S
S | ; 2 r 2 T I,;;;' 'Lt{ . 1 \

Fig. 6.35. External load application in the case of position P for: a) L 6A, b) L 6B

The second example concerns influence of the initial prestress level on the unstable regions
in the case of load position P (Table 6.13). The dynamic behaviour is presented for load
conditions P = 1 kN and P = 5 kN, and three levels of initial prestress. In this case, the S, IS
on the similar level, however, the instability regions distribution is different. As in the Example
1, the resonant frequency n1 of the L 6A is on the same level, do not depend on the pulsatility
index v, and the risk of the excitation of unstable motion decreases. In turn, for the L 6B dome,
the increasing of external load resulted in the widening of the limits of instability region.

Next, the impact of the initial prestress level on the range and distribution of instability
regions is compared (Fig. 6.36). Similarly to the Example 1, the behaviour of instability regions
under the influence of the initial prestress level is characterized by the gradual reduction and
then increase, in the case of P = 1 kN. In the case of L 6B dome and P = 1 kN, the noticeable
reduction of unstable region area at level S = 110 kN was approximately 92%, and only 40%
for the P = 5 kN.

Fig. 6.37 presents instability regions corresponding to resonant frequencies dependent on
the initial prestress level (n1, n2, n3, n4, n5) and one independent frequency (n6). Only the
first three frequencies (n1, n2, and n3) are characterized by the instability regions wide enough
to increase the risk of occurring excitation of unstable motion. The complete narrowing of limit

of instability regions is noticed for the frequencies n4, n5, and n6.
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Table 6.13. Limits of main instability regions of the L 6A and L 6B domes for load position P(?)
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Fig. 6.36. Influence of the initial prestress level S on the range of unstable regions of: a) L 6B for
P =1KkN, b) L 6B for P =5KkN
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Fig. 6.37. Limits of six instability regions of the L 6B dome (S,,,;, = 48 kN), for the
load P = 5 kN

Conclusion of the comparison: The dynamic response of the L 6A dome remains the same in
comparison to Example 1, while the L 6B dome is characterized by a wider unstable region that
occurs even at the high level of the initial prestress. Comparing all resonant frequencies
dependent on the initial prestress level, the one corresponding to the mechanism is characterized

by the widest unstable region.

Example 3

Subject of the comparison: L 6A (Fig. 6.38a) and L 6B (Fig. 6.38b) domes, load position P(®

— unstable regions

Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of

load position P®)? (2) Does the design solution (close or open upper section) affect unstable

regions in the case of load position P(®)?

a) L 6A b) L 6B
P=1kN - S,,;, = 1kN P=1kN - S,,i» =3 kN
P=5kN - S,,in =5kN P=5kN - S,,;, = 12kN
-ﬁf\',rrii 7“
< 7= XN LATFNY v R
1' ]’)1‘1 / / [ LJ ¥ ‘

-

Fig. 6.38. External load application in the case of position P(Y for: a) L 6A, b) L 6B
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The next considered example concerns the dynamic behaviour of the considered domes in

the case of the load position P(® (Table 6.14). The L 6B dome is characterized by the lowest

resonant frequency level in comparison to Example 1 and Example 2, due to the fact that the

external load is positioned farthest away from the infinitesimal mechanism. In the case of low

load value, both domes are characterized by the absence of instability regions, however, the

increased external load resulted in the occurrence of instability region of L 6B dome.

The impact of the initial prestress level on the distribution of the range and distribution of

instability regions (Fig. 6.39) is similar to Example 1 and Example 2.

Table 6.14. Limits of main instability regions of the L 6A and L 6B domes for load position P(®)

Smin(A) = 1kN _ _
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Fig. 6.39. Influence of the initial prestress level S on the range of unstable region of: a) L 6B for
P =1KkN, b) L 6B for P =5KkN

Conclusion of the comparison: In the comparison to Example 2, the L 6B characterized by the

smaller unstable regions, whilst the behaviour of L 6A dome remains the same. The occurrence

of unstable regions noticed only at the low level of the initial prestress.
Example 4

Subject of the comparison: L 6A, L 6B — unstable regions

Aim of the comparison: (1) How do the load value and position affect the distribution of

unstable regions? (2) For which dome the probability of the unstable regions is least likely to

occur? (3) What is the most optimal recommended initial prestress level?

The summarized results present the distribution of instability regions that correspond to
the first resonant frequency, in the case of different load situations (Fig. 6.40). The external
load is equal to 1 kN (1) and 5 kN (5), whereas different load positions are defined as (1,2, or
3). The caption “LA 1(3)” stands for type A dome loaded with force 1 kN applied in position
3. The results are presented for the S,,;, level of prestress. In the case of type A dome (LA),
neither load value nor position influences the level of resonant frequency. The limits of
instability regions completely overlap. In turn, for the dome type B (LB), the resonant frequency
depends on the external load. The load position P results in the highest resonant frequency,
thus the widest instability region occurs in the situation P and P = 5 kN. The behaviour of L
6B dome is similar to the MG 6B dome (Geiger dome, modified, type B). The distribution of

areas of instability regions is the same.
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Fig. 6.40. Influence of the initial prestress level S on the range of unstable region of: a) L 6A, b) L
6B

The influence of the initial prestress level on the areas of the unstable regions is presented
in Fig. 6.41. In the case of the LA dome, the impact of the initial prestress is absent, the
behaviour is similar to the MG 6A dome (Geiger dome, modified, type A). In turn, the impact
is nonlinear for the LB dome. However, the graph shape and the relation are different, than in
the case of the MG 6B dome. The initial prestress level has an impact on the area of unstable
regions even at the high levels of the prestress, unlike the Geiger dome.

a) b)

=LA 1(1) -=LA1Q2) LA 1(3) = LB1(1) =B 1(2) LB 1(3)
-=LAS5(1) = A5(2) LA 5(3) =1 B5(1) -=LB5(2) LB 5(3)

area of unstable region
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Ay (8) [

0 = — E——————— 33— 0 e ———
0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120
S [KN] S [kN]
Fig. 6.41. Influence of the initial prestress level S on the area of unstable region 4,,: a) L 6A, b) L
6B

Conclusion of the comparison: The load value and position have no impact on the unstable

regions in the case of L 6A dome. In turn, for the L 6B dome the situation is opposite, however,
only the load value effects the distribution of the unstable regions. Similarly to the Geiger
domes, the probability of the occurrence of the unstable regions is getting smaller with an

increasing of the initial prestress level, nonetheless, the level of prestress is significantly higher
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than in the case of Geiger domes. The most optimal recommended initial prestress level is above
S =100 kN.

6.5. Summary

The behaviour of the Levy dome is significantly different in comparison to the Geiger
dome. The structures’ response to the external load highly depends on the presence of the
infinitesimal mechanism. The type A Levy dome (without the infinitesimal mechanism)
behaves like a traditional rod-like structure, and the initial prestress level has little impact on
the static parameters of the dome. In turn, type B Levy dome (with infinitesimal mechanism)
behaves similarly to the Geiger dome, nonetheless, the impact of the initial prestress level is
significantly smaller. Additionally, the type A dome characterized by the lower minimum
prestress level.

The dynamic analysis of Levy domes shows, that the natural frequencies level of the type
A domes is not related to the number of load-bearing girders of the structure, and only a little
linear influence of the initial prestress level can be observed. On the other hand, in the case of
type B domes, the natural frequencies level highly depends on a number of load-bearing girders
and high nonlinear impact of the initial prestress level occurs. Additionally, the type B domes
are characterized by the additional natural frequencies that depend on the initial prestress level.
The situation is similar for free frequencies. In the case of type A Levy dome, free frequencies
do not depend on neither the initial prestress level, nor load value or position. In turn, for the
type B levy dome the situation is opposite, however at the maximum prestress level S = 120 kN
the values of the natural and free frequencies are the same (the discrepancy less than 1%).

In the case of dynamic stability analysis, the occurrence of unstable regions is detected
only for type B dome. The widest unstable region occurs in the case of load position P(® and
P = 5 kN, where the increase in the initial prestress level didn’t result in the narrowing of limits.
The limits of unstable regions of type A dome fully coincide, and the dome is insensitive to the
change to the change in the resonant frequencies.

The results of the analysis show that the ability to control the dome behaviour by adjusting
the initial prestress level is possible only for type B dome Levy dome. However, this dome is
characterized by higher minimum prestress level and is more sensitive to the external load. In
turn, for the type A dome initial prestress level has little impact, but the dome is less sensitive
to the external load condition.
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7. Conclusions

The dissertation thesis concerns the dynamic stability of tensegrity domes. The research
was conducted in regard to the influence of the initial prestress level on the static parameters
(displacements, stiffness, maximum effort) and dynamic parameters (natural and free
frequencies of vibrations, unstable regions). The analysis of the two most known tensegrity
domes, i.e., Geiger dome and Levy dome, was performed. The analyzed domes were presented
with different number of load-bearing girders, structural modifications, and subjected to the
different external load situations in order to compare structures response. The structural
modification of the Geiger dome relies on changing the upper section of the dome, replacing
the original open upper section with the single strut (closed upper section), and introducing
additional circumferential cables. In terms of the Levy dome, only the modification of the upper
section was introduced. The aim of the work was to answer the questions posed in Chapter 1

(research purpose and scope).

i.  How does the initial prestress impact static parameters of the domes with and without

infinitesimal mechanisms?

It is known from the literature, that initial prestress level impacts static parameters of the
structure with infinitesimal mechanisms. This is in the case of Geiger domes under
asymmetrical load. The Geiger domes are characterized by a dozen (several dozens) of
infinitesimal mechanisms, the number of which depends on the number of load-bearing girders
and design configuration. The mechanisms are related to the geometric variability of the entire
dome. The influence of the initial prestress level on static parameters of Geiger domes is always
significant. The impact on the displacements is nonlinear and greater at the low values of the
initial prestress. The stiffness of the dome increases linearly, even up to 13 times. The exception
is a symmetrical load applied on the dome. In this case, the influence of the initial prestress
level is absent, because the resulting displacements are inconsistent with the infinitesimal
mechanism.

In the case of Levy domes, only the dome type with an open upper section (type B Levy
dome) was characterized by one infinitesimal mechanism. However, the mechanism is related
only to the upper section of the dome. For the type B Levy dome (with the infinitesimal
mechanism), the influence of the initial prestress is similar but significantly smaller. Depending

on the load type, a small nonlinear or linear impact on the displacements was observed. The
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stiffness of the dome increases linearly only up to 3 times. In turn, for the type A Levy dome
(without the infinitesimal mechanism), the low linear impact of the initial prestress level on the
displacements and stiffness can be noticed, which in comparison to the Geiger domes is almost

absent.

ii.  What is the relation between the initial prestress level and vibration frequencies that

correspond to the infinitesimal mechanisms?

The dynamic analysis of Geiger domes showed the nonlinear relation between natural
frequencies corresponding to the mechanism and initial prestress level. In the case of type A
domes (regular and modified), the number of load-bearing girders did not affect the level of
natural frequencies, and frequencies were less sensitive to the change in the initial prestress
level. In turn, for the type B Geiger domes, the situation is opposite. In the case of free
frequencies of Geiger domes, the discrepancy between natural and free frequencies (for
different load positions) was noticed only for low levels of initial prestress. The increase of the
prestress results in the convergence of the values of frequencies.

In the case of the type B Levy dome, there is only one natural frequency corresponding to
the infinitesimal mechanism, and the impact of the initial prestress level is nonlinear. For the
free frequencies, the situation is similar to the Geiger domes. The type A Levy dome is not
characterized by the mechanism, and therefore there are no frequencies correspond to the

mechanism.

iii.  What is the relation between the initial prestress level and vibration frequencies that

do not correspond to the infinitesimal mechanisms?

During the dynamic analysis, it was noticed that some natural frequencies that do not
correspond to the infinitesimal mechanisms are influenced by the initial prestress level. This is
in the case of type A Geiger domes (regular and modified) and type B Levy domes. The number
of these additional frequencies depends on the number of load-bearing girders of the dome. In
the case of Geiger domes, the impact of the initial prestress on natural frequencies not
corresponding to the infinitesimal mechanism was linear, thus, for the Levy dome — nonlinear.

The influence of the initial prestress level increases with the number of load-bearing girders.
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iv.  How does the initial prestress level influence the distribution and range of unstable

regions?

The dynamic stability analysis shows that the widest unstable regions occur at the
minimum initial prestress level. Additionally, the widest regions are related to the last resonant
frequency correspond to the mechanism. Nonetheless, an increasing of the prestress results in
the complete or partial narrowing of the unstable regions. The resonant frequencies (unstable
regions) of Geiger’s dome are more sensitive to the change in the initial prestress level, thus
increasing prestress to the maximum level resulted in a complete narrowing of areas of regions
for each considered example. In turn, for the type B Levy dome, due to a little sensitivity to the
change in the initial prestress level, some cases are characterized by wide unstable regions even
at the maximum prestress. The type A Levy dome is not characterized by the presence of

unstable regions and the initial prestress level has no impact on the resonant frequencies.

v.  How does the position and value of the external load influence the static and dynamic

response of the dome?

For the purpose of the analysis, several types of external load conditions were selected.
The vertical force was applied in different positions on the load-bearing girder and two variants
of the force values were presented. For the considered domes, different positions/values of the
external load resulted in the change of the minimum prestress level. The exception was the
Geiger patent dome (regular type B Geiger dome with 6 load-bearing girders). In the case of
Geiger domes, significant was symmetrically distributed external load. This load type is
inconsistent with the infinitesimal mechanisms of the dome, thus, the influence of the initial
prestress level on static parameters is absent. For the type B Levy dome, the load positioned in
the upper section requires the highest minimum prestress level. This is due to the location of
one infinitesimal mechanism in the upper section of the dome. In turn, for the type A Levy
dome, the load positioned in the middle section of the dome causes the higher minimum
prestress level. For each considered dome, the greater impact on static and dynamic parameters
had rather the load value than position.

Vi. How does the structural modification influence the static and dynamic response of the

dome?

In the case of the Geiger domes, the closed upper section resulted in the decreasing number
of the infinitesimal mechanisms, thus, decreasing sensitivity to the change in the initial
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prestress. In turn, modification of cable layout (additional circumferential cables) didn’t result
in the improvement of the static response of the structure. Additionally, in the case of type B
Geiger domes, extra cables introduced a negative impact on the dynamic stability of the dome.

The open upper section in the Levy domes (type B dome) results in the appearance of the
infinitesimal mechanism, i.e., the ability to control static and dynamic parameters of the
structure. It is worth mentioning, that type B Levy domes are characterized by significantly
higher minimum prestress level and wide unstable regions. In terms of the dynamic response,

type A Levy domes are more stable.
i.  What are the design guidelines for the application of tensegrity domes?

The application of tensegrity domes in the real structure is a very demanding process. The
existing tensegrity structures around the world are the ones without the infinitesimal
mechanisms. In turn, the domes analyzed in this work characterized by the infinitesimal
mechanisms, can be used for example for temporary structures, e.g., arenas, roofs, and festival
facilities. In terms of applying these types of structures to real objects, additional analyses must
be conducted (including experimental studies). The analyses must include the physical

nonlinearity of cables and local stability analysis (the local buckling of single elements).

Conducted analysis confirmed the following hypothesis:
1. Control of static and dynamic parameters is only possible for tensegrity domes that
exhibit an infinitesimal mechanism.
2. Structural modifications can both improve and impair domes’ response to the external
load.
3. The initial prestress affects the distribution of dynamic unstable regions in tensegrity
domes subjected to periodic loads.
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The consideration in the thesis is summarized in the Table 7.1:

Table 7.1. Summary of thesis considerations

Geiger domes Levy domes
Type A Type B Type A Type B
e Self-stress e Self-stress e Self-stress
Tensegrity states states e Self-stress state
features e Infinitesimal | e Infinitesimal state e Infinitesimal
mechanisms mechanisms mechanism
Influence of the initial prestress level on following parameters:
Static parameters
Displacements significant significant absent insignificant
Maximum N - N I
offort significant significant significant significant
Stiffness significant significant insignificant insignificant
Dynamic parameters
those, that those, that
Natural correspond to correspond to
frequencies the mechanism those. that the mechanism
and and additional correspond to insignificant and additional
Free dependent on the the mechanism dependent on the
] number of the number of the
frequencies load-bearing load-bearing
girders girders
UnsFabIe significant significant absent insignificant
regions
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Appendix A — Spectral analysis of Geiger dome (RG 6B)

(Mathematica environment)

nesa- 1p = 63 (wliczba dzwigarow nosnychs)

lwp = 7; («liczba wezlow dzwigaras)

lep = 9; («liczba elementow dzwigaras)

11 = 4; (wliczba lacznikows)

1z = 3; (wliczba zastrzaloww)

xL = {5., 5.0, 20., 28., 40., 40., 60} « 18" (-1} ;

{wwspolrzedne dzwigaras)

z1 = {21., 15., 18.5, 4.5, 11.5, -11.5, 8} « 18" (-1} ;

¥ = Table[®, {lwp «1p}];

v = Table[@, {lwp«1p}];

z = Table[@, {lwpw 1p}];

Do [
X[[11] =x1[[1]];
z[[i]] =z1[[i]]
Vs
{i, lup}

1

als = 368 / 1p;

als = als / 180 « P1i;

Do

i
1

np = i« lup;

Do [

{

al =iwals;
x[[np+3])

vilnp+31]

z([np+31]

:IJ
{3, lwp}
1
Vs
(i, 1p-1}
]

¥1[[j§]] »Cos[al];
x1[[3]] »5in[al];

z1[[3]1]

pll = {1, 3, 5, 3, 5, 7, 2, 4, B};
pzl = {2:! 4: EJ 1: 3: 5: 3: 5: '-'F.."J.
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lwe = 1pw (lep+ 11} ; (#liczba wszystkich elementows)
pl = Table[@, {lwe}];

p2 = Table[@, {lwe}];

kK =0;
Do |

{
K++;
pL[[i]]
P2[[1]]
¥,
(i, 1z}
]

pll[[i]];
p21[[i]]

Do |

Do [

L

ks+;

PL[[k]] =pll[[]]] =1 lwp;
P2 [k]] =p21[[F]] =1« Lup
s

{3, 1z}
]
¥
{i, 1p-1}
]
Do|
{
K++}

pl(k]] =pl1[[i]];
p2[[k]] =p21[[i]]
Ya
{i, 1z + 1, lep}
]

Do|

Do [

k++;
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PL[[k]] =pll[[F]] +1i« lwp;
PZ[[k]] =p2L[[F]] + 1« Lwp),
{J, 1z +1, lep}
1
Y,
{i, lp-1}
|

1i= ‘.1: ZJ 4.1 6].:

Do [
(
Do|
{
k++;
PI[[k]] = Li[[J]1] + (i-1) # lwp;
P2[[k]] =pl[[k]] + Lup
¥
{j, 11}
1
¥
{i, 1p-1}
13
Do [
{
kK++3
PLI[k]] = 1i[[F]] + (lp-1) » lup;
pP2[[k]] =1i[[3]]
1
{i, 11}

]

1wz = 1z + 1p; («liczba wszystkich zastrzalows)

1w = 1wp « 1p;

{wgeometria calej kopulyw)

wezly = [Thlck Tahle[Text[St}rle[l, {Larger, Buld}j »

{x[[1]] +@.005, y[[i]] +@.0@85, z[[i]] +@. '393}].1 {i, 1, Iw}]};
prety = [Thlck Table[Text[St}rle[l, {Larger Buld}j,

Hﬂlllﬂl[ll]]J+XllF'J-lllJJ]JJ-’249 a5, Wl[PilllJJ]J+}"l[PZl[1J]]J}."249 85,
(Z(lPL[[L]]]] +2([P2[[1]]]]) F2+@.85}], {1, 1, lwe}]};

zastrzaly = lTthkﬂfSS[ﬁ ei], Table[Lme[{[xllpl[[1]]]]_, yI[PL[[1111], z[(PAL[1]]1]},
{ﬂlllﬂl[ll]]];}"l[PZl[ll.]]J, z[[p2[[1]]))]3}], {1, 1, Iwz}]};

ciegna = {Thlckness[la E"'5’32].1TE“?']-E[Lll'IIE[l{?'{l[li*ll[1JJJ],3|;"l[|2*1[[1]]JJ,Zl[li*:l-l[ilJ]JJ}J-

{K[ll-'l?-[ll]]J]; VOIP2L[E)]10, 200P20I4]]) )3 0, (1, Iwz + 1, 1we}]};
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Graphics3D [ {zastrzaly, ciegna, Red, wezly} ]

npES 1= dﬂﬂE_:
le = lwe;
1w = 1w;

odebrane stopnie swobody;
odebrane stopnie swobody;
loss = 3« 1p;

toss = Table[@, {loss}];

nwo = 1wp; («numer pierwszego wezla obwodowegow)
Do |

toss[[3«i-2]] =3 «nwo-2;
toss[[3wi-1]] =F «nwo-1;
toss[[3«1]] =3 » nwo;
NWo = NWo + 7

),

{i, 1p}

]

charakterystyki elementiow;
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e = Table[210000000, {1e}];

a = TablE[E‘J {le.}].;'

ac = 3.14159 « 10" {-4) ;
az = 6.8« 10" (-4);
ciegna;

Do [

[
al[i]] =ac;
i
{i, lwz +1, 1lwe}
13
zastrzaly;
Do[

!
al[i]] = az;

)
{i, 1, 1wz}
1
stopnie swobody;
1155 = 6;
lgss = 3« 1w;

tablica wszystkich stopni swobody;
tss = Table[i, {i, 1lgss}];

niezerowe stopnie swobody;
Inss = 1gss - loss;
tnss = Table[@, {1nss}]; inicjowanie tablicy niezerowych stopni swobody;

ii = 1;
Do[

[
c=1;
Do

(
If[tss[[i]] == toss[[J]], (J=1loss; c=@)]

¥
{j, loss}

I3
If[c=1, (tnss[[ii]] =tss[[i]]; ii++)]

1
{i, 1gss}
13

obliczeniamacierzy sztywnoscli linowej i macierzy wydluien;
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B = Table[®, {le}, {lgss}]:

Bt = Table[@, {1lgss], {1le}]:
n = Table[@&, {11ss}];

Do |

wl=pli[[i]];
w2 =p2[[i]];
wl=x[[wl]];
yl=y[[wl]];
zl=z[[wl]];
¥2 = x[[wW2]];
¥2=y[[w2]];
z2 =z[[wW2]];

L=5gri[(x2-x1) « (X2 -xX1) + (v2-vy1) = (y2-vy1) + (22-2z1) » (22-21)];
¥ = (¥2-x1) /L;

oy = (¥2-y1) /L;

cz = (z2-z21) 7/ L;

ni[3]] =3 wwl;

n{[2]) =n[[3]] -1;

n[[1]] =n[[3]] -2;

n[[6]] =3 «wl;

n{[5]] =n[[&]] -1;

ni[4]] =n[[B]] -2;

macierz odksztalcen;
Bl[1, n[[1]]]] = -ex;

Bl[1, n[[2]])] = -c¥;
Bl[i,n[[3]])] = -cz;
Bl[i, n[[4]]]] = cx;
B{[i, n[[5]1]11] = cy;
Bl[i, n[[6]])] = cz;

transponowana macierz odksztalcen;
st =e[[i]] w»a[[i]] /L;

Bt[[n[[1]], i]] = -cx » 52;
Bt[n[[2]],1]] = -cy = 52;
Bt{[(n[[3]],1]] = -cz»sZ;

Bti[n[[2]], 1]] =X %57}
Bt[[n[[5]], 1i]] = cy »sz;
Bt([n[[6]], 1]] = CZ «57;
Vs
{i, le}
1;
MatrixForm[B];

macierz szrtywnosci liniowej;
k = Bt.B;
MatrixForm[k];
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d = B.Bt;
MatrixForm([d] ;

nrzo- Length[toss];

nr2i- Warunki brzegowe;
macierz sztywnosci liniowe]j;
nk = k;
Do [

!
ii = toss[[i]];
Do|

{
nk[[ii, j]] =@;
nk[[j, ii)] = @;
)a
{3, lgss}
I
nk[[ii, 1i]] = 1;
Vs
{i, loss}
1:
MatrixForm[nk];

macilerz wydluzen (wybleranie kolumn z maclerzy) ;
nB = Table @, {1le}, {1nss}];

Do |

!
ii = tnss[[1]];
Do|

{
nB[[j, 1]] =B[[], ii])];
Ya
{3, le}
]
Vs
{1, lnss}
1;
ng // MatrixForm;

nd = nB. Transpose [nB] ;

nd // MatrixForm;
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nraz- ANALIZA SPEKTRALNA;
macierzy sztywnosci;
wnk = Eigenvalues [nk];

=X

nké = Table[®, {1gss}];

1zk = @;

Do[
If (Abs[wnk[[1]]] <18"-5, (lzk++; nk@[[1lzk]] =131,
{i, 1gss}

1

wwnk = Eigenvectors[nk];

Wik = Table[®, {1zk}, {lgss}];

Do[

!
ii=nk@[[1]];
Do |

{
ek [ [1, k1] =wwnk[[ii, k]]
1
{k, 1gss}]
)
{i, 1zk}
1
nka
MatrixForm[wwk] ;

(#liczba mechanizmow infinitezymalnyche)

oumsn- |96, 97, 98, 99, 1@, 101, 182, 183, 184, 185, 185, 187, 188, 189,

114, 115, 11e, 117, 118, 115, 124, 121, 122, 123, 124, 125, 126,
BJ @J‘ BJ BJ BJ @J‘ BJ BJ @J‘ BJ BJ @J‘ BJ BJ ¥ ] ¥ ¥ BJ @J‘ @J‘
] @J‘ ¥ BJ BJ ¥ BJ @J‘ @J‘

a a, a a4, 8,8

¥ )

] ¥ ) ] ) ] ¥ ) ] ¥ ¥ ) ] ¥

[ I s |
L ]
o & @
[ I s |
L ]
o & @

@,2,a,a,@ a4, @,e,8,8,a
BJ @J‘ BJ BJ BJ J‘BJ BJ @J‘ BJ BJ @J‘ ) ) ¥ ¥ ) ] ¥ ¥ ] ¥ ¥

11@, 111, 112, 113,

164



Appendices - Appendix A

nrs3- ANALIZA SPEKTRALNA;
macierzy d;
wartosci i wektory wlasne;
wnd = Eigenvalues [nd] ;

WArlossl Wiasne macierDy

nd = Table[@, [1le}];
1z = @
Do |

If [Abs[wnd[[1]]] < 10" {-5), (lz++; n@[[lz]] =1;}],

{i, le}
13
wend = Eigenvectors[nd];
ww = Table[@®, {1z}, {1le}];

Do |

(
1ii=n@[[1]];
Do [

{

e[ [1, k]] =wwnd[[id, k]]
Vs

ik, 1e}]

(#liczba stanow samonaprezenias)
oursn- |78,8,@,8,0,8,9,0,0,8,0,0,0,0,0,0,0,0,8,0,0,8,8,8,
B,9,0,0,0,0,0,0,e,0,0,0,0,0,0,0,0,08,0,0,0,0,0,a,06,0,8a,
@,@,@8,8,0,0,0,0,0,0,68,0,0,0,08,0,0,0,0,0,0,0,0,0,8,0,8

» 2 ¥ ¥ ) 2 ¥

oues- | [ -8.0887896, -©.8316426, -0.183968, - @.0887895, - ©.8316426, -8.183968,
@.0316426, -©.183%63, - ©.8@87896, - 0.8316426, - @.1239638, - ©.08873896,

@.0887896,
@.831s426,

@.183%68, - @.8087895, - ©.8316426, -9.103958, 8.0534651, @.0957845, A.288575,

LB957849, @, 288575,

9.83860816, ©.8957849, 0.288575, @.8534651, ©.85%57849, @, 208575, @.8358681s,
2.8957849, @.208575, @,8534651, @.8957849, 9.298575, ©.8386815, @

@.8534651, @.9957849, ©.2058575, ©.8386816, @.9957849, 0.2@8575, ©.8534651,
@.89%57849, @.2@8575, ©.038608160, 9.85578459, @.2058575, @.8534651, ©.8557849,
@.298575, @.8386816, ©.0957849, @.288575, 9.8527376, @.8376697, ©.05904273,
@.18@815, @.8527376, ©.03766%97, 8.8584273, @.188815, @.8527376, ©.83766%97,
2.89e4873, @.180815, @.8527370, @.8376697, ©.0%04873, @.180815, @.852737a,
@.8376697, @.9%04073, 0.150815, @.8527376, @.8376697, @.9%04073, @.158815
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N[TS5]:=

(wstan samonaprezenia: wartosci w elementachw)

nresi-  (#normalizacja stanu samonaprezeniaw)
wylp = ww[ [11] / @.10396843891541534"

cumss- |- ©.@845411, ~@,304348, 1., ©.8845411, ©.304348, 1., ©.0845411,
B.304348, 1., ©.9845411, ©,304348, 1., ©.9845411, ©.304348,

1., @.8845411, 9.304348, 1., 8.514243, 9.921288, 2.80613, ©,372851,
.921288, 2.808613, ©.514243, 8,921288, 2.80613, ©.372051, 0.921288, 2.00613,
,514243, @,921288, 2.80613, @.372051, ©.921288, 2.90513, 0.514243, ,921288,
.BB613, ©,372051, 9.921288, 2.00613, #.514243, 9,921288, 2.08613, ©.3720851,
.921288, 2.808613, ©.514243, 8,921288, 2.80613, ©.372051, 0.921288, 2.00613,
,587245, 8,362319, ©,869565, 1.73913, ©.507246, 2.35231%, 0, 863365, 1.73913,
,587245, 8,362319, ©,869565, 1.73913, ©.507246, 2.35231%, 0, 863365, 1.73913,
,587245, @,362319, ©,869565, 1.73913, ©.507246, ©,35231%, ©, 869365, 1.73913)

Lo B = B s B s B S I I s

nrET= Pplerwszy wektor wlasny;
macierz srtywnosci geometrycznej;
Wyl = Wylp;
kg = Table[®, {1lgss}, {1lgss}];

D'_:':I

|

wl=pl[[ne]];

w2 =p2[[ne]];

¥l = x[[wl]];
vi=y[[wl]];

1 =z[[wl]];

X2 = x[[w2]];
¥2=y[[w2]];

2 = Z[[W2]];
L=5Sqrt[(x2-x1) » (%2 -x1) + (v2-wl1) « {y2 -wy1) + (22 -2z1) » {22-21)];
cx = (x2-x1) /L;
oy = (y2-yl1) /L;
cz = (z2-21) /L;
n[[3]] =3 «»wl;
ni(2]] =n[[3]] -1;
ni(1]] =n[[3]] - 2;
n[[6]] =3 ww2;
ni(5]1] =n[[B]] -1;
ni(4]] =n[[B]] - 2;
5=wyd[[ne]];

mian = cxXx™2 4+ oy ™23

I-Flm:ian 1= @,

ki1l = {cy"2+cx"2wcz"2) /mian;
k12 = (cywcxw (cz2™2-1)) / mian;
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ki3 = —cxwcz;
k22 = (cx"*2+cy*2«cCcz™2) /mian;
k23 = -cywCZ;
k33 = (ex*2+cy™2);
k1l +5 Kki12+5 Kl3«5S k1l « S k12 « 5 k13 « S
{{ ¥ ¥ ¥ - » ¥~ }J
L L L L L
k12«5 k22+5 k23«5 k12 « S k22«5 k23*S

kge

T L L
KI3+S k2345 K33+S  KI3eS  K23eS  K33uS

¥

L) Ll

{

{ L L L’ L
{kihs Ki2+S  KI3+S Ki1eS K124S K134
{-

{-

}
}
}
}

¥

k12 « 5 kZZ-S k23 +5 Kkl2+5 K22Z+5 k23«5

h) ¥ ¥ ¥

L L L L
k1345  k23+5 k3345 k1345 k23S k3345
|_ oL T LT b
=”[J9Jﬂ ea} { Eﬂ_i },{BJE,E,BJBJE},
{; e, e, ; o, 0}, {o, —% -, 0}, (0,0,0,0,0,01}];
Do
Do |

kg[[n[[i1], m[[F]1)]] +=kge[[i, 311,
{3, 11ss}

1s

(i, 11ss}

|

]J
{ne, le}
E
warunki brzegowe macierzy sztywnosci geometrycznej;
nkg = kg;
Do

[
ii = toss[[1]];
Do|

(
nkg[[ii, §]) = @;
nkg[[j, ii]] = @;
1
{3, lgss}
I3
nkg[[ii, ii]] = 1;
s
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{i, loss}
13
MatrixForm[nkg];

ANALIZA SPEKTRALMNA;
sumy macierzy sztywnosci liniowe]j i geometryczne]j;
Eigenvalues [nk + nkg]

{wsprzawdzenie macierzy sztywnosci: wszystkie wartosci wieksze od zeraw)

currm- 484004, , 483996, , 483996, , 483961., 483 961., 483983., 395841, , 395848, , 336466.,
336466., 334641, , 334641., 238424, , 238424, , 224814., 224814., 217299., 214638, ,
214583., 214583, , 218283., 218283., 288892., 172518., 155177., 151387., 151387.,
141519,, 141519., 135384., 134@53., 132897., 132897., 119172., 119172., 185276.,
98960.3, 93442.2, 93442.2, 85154.6, 85154.6, 82347,9, 71937.9, 71937.9, 70476.6,
49488.5, 48165.7, 48165.7, 45537.1, 45537.1, 44423.8, 48935.7, 49193.5, 491593.5,
30865.2, 39805.2, 33875.8, 29712.3, 25925.4, 25925.4, 21784., 21794, , 19384.7,
16813.2, 16813.2, 14348.6, 14348.6, 7389.69, 7389.69, 5938.48, 4171.17, 3929.32,
3929.32, 2911.33, 2782.48, 2702.48, 471.585, 3.7384, 2.84541, 2.84541, 2., 2., 2.,
2.,2.,2.,2.,2.,2.,2.,2.,2.,2.,2.,2.,2.,2.,2.,1.93299, 1.86807, 1.66524,
1.66524, 1.64563, 1.64563, 1.55407, 1.4153, 1.4153, 1.38782, 1.3668%, 1.108727,
1.18727, 1.82535, 1.82535, ©.868558, 9.778693, 6.717884, 8.717884, 8.63758,
8.63758, ©.547374, ©.540744, 0.540744, 8.399974, 8.320809, ©.320809, 0.299196

{wsprawdzenie rownowagl w wezlachw)
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nrem- equpd_, p2_, x_, ¥v_, Z_, wyBp_, element_] :=
Module| {wl, w2, x1, v1, z1, x2, y2, z2, L, cx, ¢y, €z, suml, sum},

(sum = @;
Do|

wl=p1l[[i]];
w2 =p2[[i]];

1 =x[[wl]];

¥l=y[[wl]];

1 =z[[wl]];

x2 =x[[w2]];

¥2 =y[[w2]];

z2 =z[[w2]];

L= {(x2-x1)"2+ (y2-y1)"2+ (z2-21)"2)"0.5;
cx = (x2-x1) /L;

cy = (y2-yl) /L;

cz=(z2-21) /L;

suml = cx e wy@p [[1]] + cy «wy@p[[L1]] + cz wmy@p[[i]];
If [element == p1[[1]], sum = sum + suml, sum = sum];

If[element = p2[[1]], sum = sum- suml, sum = sum], {i, Length[pl]}];
sum) ]

sumequ = 8;
Do

sumequ2 = equ[pl, p2, x, y, Z, Wwylp, i];
Print[i, "-", sumequ2];

sumequ += sumequ ™2
sumequ += sumequ *2
, {i, {1,2,3,4,5,6, 8,9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 29,
22, 23, 24, 25, 26, 27, 29, 38, 31, 32, 33, 34, 360, 37, 38, 39, 40, 411}]1;
sSumequ
output?2 =1/ (sumequ®@.5 + &.00881)
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1 2.33558- 18 1%
2 B.32667 18 1€
3--2,55351x1@ 1%
4 -3,9968 .18 *F
5-1.33227+18%F

4,44p89 - 18 ¢

oy

g 3.33@67 - 18 F

3 -4.44889 .18
18- -3.18862- 18 ¥°
11 - 2.66454- 1@ *F
12 6.66134- 1@ *F
13-2.44249 18

15 - 3.33867- 18 *F
16-2.77556 18 *°
17--2.82616- 18 1
18- -2.44249 18 1°
19 -1.44329.18°1%
28 §£.21725-18°15
22 5.55112.1@ *F
23 3.6@822. 1@ *F
24--2.27596~18 *F
25 -9.39281- 18 *F
26 6.66134. 18 1
27-2.55351-18

23 -2.9976- 18
38 2.88658 .18

31 -5.55112-18 V7
32--1.77636-18 **
33-9.99201- 1@ *F
34--5.77316~ 18 **
36-8.88178- 18 *°
37-2.22p45 19 ¢
38--1.52656 1@ 1F
3% 8.88173- 18 1F
48-2.44249 18 1

41-5.32087 =18

oursz- 2.1237 « 18728

outra<l- 1801 808,
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Appendix B — Genetic algorithm (Python environment)

import pygad
import numpy as np
import scipy.linalg as la

def equipl, p2, x, v, z, wy02, element}:

sum =0
for iin range(len{pl)):
wl = pl[i]
w2 = p2[i]
X1 = x[wl - 1]
¥yl =y[wl-1]
z1 = z[wl - 1]
e = x[w2 - 1]
y2 = y[w2 - 1]

z2 = z[w2 - 1]
L=((x2-x1)** 2 + (y2 - yl) ** 2 4 (22 - 21) =% 2) *=* (.5
= (x2-x1) /L
cy =(y2-yl)/L
cz=(22-21)/L
suml = ex * wyD2[i] + ey * wy02[i] + cz * wy02[I]
if element == pl[i]:
#print(i + 1)
#print{sum1)
sUm = sum + suml
#Fprint{sum)
elif element == p2[i]:
Forint{i + 1)
#oprint{-sum1i)
SUm = sum - suml
#print{sum)
return sum

def fitness_func(solution, solution_idx):
# Calculating the fitness value of each solution in the current population.
# The fitness function calculates the sum of products between each input
and its corresponding weight.

hi=1

bz =1

b3 =1

#kilka modufow
le = 78

Iw =42

#pierwszy | ostatni numer wezla
pl = [15, 8, 7, 36, 29, 22, 37, 14, 9, 16, 23, 30, 25, 32, 39, 35, 11, 18,
27,34,41, 13, 20, 6, 36, 7, 22, 15, 8, 29, 21, 24, 38, 17, 10, 31, %
35,42, 25, 26, 18, 19, 11, 12, 39, 40, 32, 33, 27, 28, 41, 5, 6, 1, %
20, 3,4, 34,13, 2, 37, 7,8, 15, 22, 29, 21, 24, 31, 10, 38, 17,
42,19, 40, 12, 26, 33]

p2 = [8, 7, 36, 29, 22, 15, 14, 9, 16, 23, 30, 37, 32, 39, 35, 11, 18, 25, \
34, 41, 6, 20, 27, 13, 38, 21, 24, 17, 10, 31, 14, 23, 37, 16, 9, 30, \
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42, 21, 26, 24, 19, 17, 12, 10, 40, 38, 33, 31, 28, 26, 5, 40, 1, 42,
3,18, 33, 4, 2, 12, 36, 14, 9, 16, 23, 30, 35, 25, 32, 11, 39, 18,
6, 20, 41, 13, 27, 34]
#wspolrzedne
%1 = [6.00,3.00,-3.00,-3.00,3.00,4.00,0.50,0.25,0.25,1.00,1.00,2.00,2.00

A
0.50,-0.25,-0.25,-1.00,-1.00,-2.00,-2.00,2.00,-0.50,-0.50,-2.00,-2.00

A

-4.00,-4.00,-6.00,-0.25,-0.25,-1.00,-1.00,-2.00,-2.00,2.00,0.25,0.25,
100\

1.00,2.00,2.00,4.00]

y1l = [0.0,5.20,5.20,-5.20,-5.20,0.0,0.0,0.43,0.43,1.73,1.73,3.46,3.46,0.0
,0.43,\
0.43,1.73,1.73,3.46,3.46,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.43,-0.43,-
1.73,\
-1.73,-3.46,-3.46,0.0,-0.43,-0.43,-1.73,-1.73,-3.46,-3.46,0.0]

z1 = [0.0,0.0,0.0,0.0,0.0,-1.15,2.10,2.10,1.50,1.85,0.45,1.15,-1.15,1.50
A
2.10,1.50,1.85,0.45,1.15,-1.15,1.85,2.10,1.50,1.85,0.45,1.15,-1.15,\,
0.0,2.10,1.50,1.85,0.45,1.15,-1.15,0.45,2.10,1.50,1.85,0.45,1.15,-1.
15,1.15]

element * bl for element in x1]
lerment * b2 for element in y1]
lement * b3 for element in z1]

x =
y = [e
z=[e

toss = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,82,83,84]
loss = len(toss)

e = np.onesile) * 210000000
a = np.onesile) * 1 * 10 == {-4)
# liczba clegien
for i in range(60):
alil] =1 %10 == (-4)

llss = 6
lgss = 3 * lw

tss = np.arange(0, lgss) + 1
Inss = Igss - loss
tnss_def = np.arange(0, Ilgss) + 1

for j in range(loss):
for i in range(len{tnss_def}):
if tnss_def|i] == toss[j]:
tnss_def[i] = 0

tnss = np.zeros{lgss - loss)

i=0
for i in range(len(tnss_def)):

172



Appendices - Appendix B

if tnss_def[i] =0
thss[j] = tnss_def[i]
j4=1

B = np.zeros((le, lgss))

Bt = np.zeros{(lgss, l&))

Btsz = np.zeros((lgss, le))
=[0,0,0,0, 0 0]

for iin range(le):

wl = pl[i]
w2 = p2[i]
¥l = x[wl - 1]
vyl =vy[wl-1]

z1 = z[wl - 1]
2 = %x[w2 - 1]
y2 =ylwl-1]
z2 =z|wd - 1]

L= ((x2 - x1) ** 2 4 (y2 - y1) ** 2 & (22 -

ex = (®¥2 -x1) /L
cy = (y2-yl}/L
cz=(22-z1)/L
n2] =3*wl-1
nf1] =3 *wl-2
nfd] =3 *wl-3
nfsl=3*w2-1
nf4] =3 *w2-2
nf3]=3*w2-3
Bli][int(n[0])] = -cx
Blillint(n[1])] = -cy
Blil[int{n[2])] = =cz
Blil[int(n[3])] = cx
B[i][int{n[4])] = cy
B[i](int{n[5])] = cz
Bt[int(n[0])}][i] = -cx
Blint(n[1])][i] = -cy
Btlint(n[2])][i] = -cz
Bt[int(n[3])][]
B[int(n[4])][i]
Btlint(n[51)1[i]
sz = e[i]*
Btsz[int(n[0]
Btsz[int(n[1]
Btsz[int(n[2]
]
|
|

|
n |
n | CX
n | Cy
n | C

[i
[i
[i
[i
s
ali

_"‘“ll i

=—cx*sz
[i] = -cy * sz
[i] = -cz * sz
[
|
[i]

[i

Btsz[int(n[3
Btsz[int(n[4
Btsz[int(n[5

i]=cx * sz
||— * 57
i] =cz * sz

]
]|
)]
)]
)]
)]
)]

| — —

k = Bt.dot(B)
kk = Btsz.dot(B)
# d = B.dot(Bt)

nk = k

z1) ** 2) ** 0.5
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for i in range(len(tss)):
for j in range(loss):
if (i + 1) == toss[]]:
for ii in range(lgss):

ifii ==1i:
nk[i][i] = 1
else:
nk[i][ii] =0
nk[ii][il =0

nkk = kk
foriin range(len(tss)):
for j in range(loss):
if (i + 1) == toss[]]:
for ii in range(lgss):

if ii == i:
nklilli] =1
else:
nk[i][ii] = 0
nk[il][i] =0

i=0
nB = np.zeros{(le, Inss))
for i in range(inss):
i = tnss[i]
for j in range(le):
nB[i1[i1 = B[i1[int(ii - 1)]
nd = nB.dot{np.transpose(nB))

foriin range(len(tss)):
for j in range(loss):
if (i + 1) == toss([]]:
for ii in range(lgss):

ifii ==1i:
nk[i[i] = 1
else:
nk[i][ii] = 0
nk[iil[i] = O

#grupowanie elementow
max_ss = max(solution}
wy02 = np.zeros(le)

.61, solution[0] / max_ss)

,12), solution[1] / max_ss)
2,18}, solution[2] / max_ss
np.put{wy02, np.arange(18,2 solution[ 3] / max_ss

np.put{wy02, np.arange(
(
E )
np.put{wy02, np.arange(24,30), solution[4] / max_ss)
( )
( )
(
(
(

np.put{wy02, np.arange

0
6
np.put{wy02, np.arange(1
1

8)

4)

0)

np.put{wy02, np.arange(30,36), solution[5] / max_ss
np.put{wy02, np.arange(36,48), solution[6] / max_ss
np.put{wy02, np.arange(48,60), solution[7] / max_ss)
)

)

np.put{wy02, np.arange(60,66), -solution[8] / max_ss)
np.put{wy02, np.arange(66,72), -solution[3] / max_ss)
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np.put{wy02, np.arange(72,78), -solution[10] / max_ss)

#sprawdzenie rownowagi wezlow
print("Przyjety self-stress: \nss = " + str{wy02))
wyl = wy02

sum_equ =0
13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,

30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53
54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,68,70,71,72,73,74,75,76,77
78]

foriinc:

sum_equ? = equipl, p2, x, v, 2, wy02, i)
SUM_equ += sum_equ2 ** 2

output2 = 1/ {sum_equ ** 0.5 + 0.00001)

print("suma wezly")
print{sum_esgu)

kg = np.zeros((lgss, lgss))
nn = np.zeros(llss)
for i in range(le):

wl = plJ[i]

w2 = p2[i]

®x1 = x[wl - 1]
¥yl =y[wl-1]
z1 =z[wl - 1]
x2 = x[w2 - 1]
y2 = y[w2 - 1]

z2 = z[w2 - 1]

L=(({x2-x1)%*2 + (y2-y1)** 2+ (22-21) ** 2) ** 0.5

nnf2] =3 *wl-1

nnfl] =3 *wl-2

nn[0] =3 *wl-3

5] =3*w2 -1

nnfd4] = 3 * w2 -2

nA[3] =3 * w2 -3

S = wyD[i]

kge = 5/ L * np.array([[1, 0, O, -1, 0, 0],
0, 1,0,0,-1,0],
[0, 0,1,0,0,-1],
[-1,0,0,1,0,0],
(0, -1, 0,0,1,0],
[ﬂ: 0,-1,0,0, 1”]

for j in range(llss):

for ii in range(llss):
kg(int(nn[i])][int(nn[j])] += keelil][j]

nkg = kg
foriin range(lenitss)):
for j in range(loss):
if (i + 1) == toss[j]:
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for ii in range(lgss):

if ii == i:
nkg[i][i] = 1
else:
nkg[i][ii] = 0
nkg[ii][i] = 0

ktl = np.add(nkg, nkk}
nktl = ktl
for i in range(len{tss)):
for j in range(loss):
if (i + 1) == toss[}]:
for ii in range(lgss):

if ii == i:
nktl[i][i] = 1
else:
nktd[i][ii] =0
nktl[ii][i] =0

wnkg_eigvals, wnkg_eigvecs = la.eig{nktl)

# print{"Wartosci wlasne styczne] macierzy sztywnosci: " + str{np.sort{np.

real{wnkg_efgvals))))
wnkg_positive = False
for i in range(len{wnkag eigvals)):
if wnkg_eigvals[i] == 0:
wnkg_positive = True
else:
wnkg positive = False
break

if wnkg_positive:
wnkg_str = "Zidentyfikowany mechanizm jest infinitezymalny"
wrnkg_red = [x for x in wnkg_eigvals if x = 1]
# output = min{wnkg_red)
output = 1
print{wnkg_red)

else:
wrikg_str = "Mechanizm nie jest stabilizowany przez stan
samonaprezenia”
output = 0
print(wnkg_str)

print("rownowaga", output2)
print{"Kt", output)

fithess = output2 * output
return fithass

fitness_function = fitness_func

num_generations = 1100 # Number of generations.
num_parents_mating = 150 # Number of solutions to be selected as parents
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in the mating pool.
sol_per_pop = 250 # Number of solutions in the population.
num_genes = 11

init_range_low = 0.01
init_range_high = 0.99

parent_selection_type = "sss" # Type of parent selection.
keep_parents = -1 # Number of parents to keep in the next population. -1
means keep all parents and 0 means keep nothing.

crossover_type = "uniform" # Type of the crossover operatar,

# Parameters of the mutation operation.

mutation_type = "random" # Type of the mutation operator,
mutation_percent_genes = 20 # Percentage of genes to mutate. This
parameter has no action if the parameter mutation_num_genes exists or
when mutation_type is None.

last_fithess = 0
def callback_generation(ga_instance).

global last_fitness

print{"Generation = {generation}".format{generation=ga_instance.
generations _completed))

print("Fitness = {fitness}" .format{fitness=ga_instance.best_solution
(0

print("Change = {change}".format(change=ga_instance.
best _solution()[1] - last_fitness))

last_fitness = ga_instance.best_solution{)[1]

# Creating an instance of the GA class inside the ga module. Some

parameters are initialized within the constructor.

ga_instance = pygad.GA{num_generaticns=num_generations,
num_parents_mating=num_parents_mating,
fitness_func=fitness_functian,
sol_per_pop=sol_per_pop,
NUM_genes=numm_genes,
init_range low=init_range low,
init_range high=init_range_high,
parent_selection_type=parent_selection_type,
keep_parents=keep_parents,
crossover_type=crossover type,
mutation_type=mutation_type,
mutation_percent_genes=mutation_percent_genes,
random_mutation_min_val=0,
random_mutation_max_val=1.0,
on_generation=callback_generation)

# Running the GA to optimize the parameters of the function.
ga_instance.run()

# After the generations complete, some plots are showed that summarize the
how the outputs/fitenss values evolve over generations.
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ga_instance.plot_result()

# Returning the details of the best solution.

solution, solution_fitness, solution_idx = ga_instance.best_solution()
print{"Parameters of the best solution : {solution}".format(sclution=
solution))

print{"Fitness value of the best solution = {solution_fitness}".formal|
solution_fitness=solution_fitness}))

print{"Index of the best solution : {solution_idx}".format({solution_idx=
solution_idx))

#prediction =
#oprint{ "Predicted output based on the best solution : {prediction}".format{
prediction=prediction)})

if ga_instance.best_solution_generation != -1:

print("Best fitness value reached after {best_solution_generation}
generations.”.format{best_solution_generation=ga_instance.
best_solution_generation))

# Saving the GA instance.

filename = "genetic’ # The filename to which the instance is saved. The
name is without extension.

ga_instance.save(filename=filename)

# Loading the saved GA instance.
loaded_ga_instance = pygad.load(filename=filename)
loaded ga instance.plot_fitness()
string = """
print{solution)
for i in solution:
string = string + str(i) + "
print (string)
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Example of the solution calculated for Geiger dome (RG 6B)

Parameters of the best solution : [1.06641286 0.83229971 1.93267036 3.9547615 1.10785665 0.84460437

2.06033303 4.5027814 0.16996956 0.66759805 2.26572047]

Fitness value of the best solution = 21.616%94475071151

Index of the best solution : 0

Best fitness value reached after 1029 generations.

[1.06641286 0.83229971 1.93267036 3.9547615 1.10785665 0.84460437
2.06033303 4.5027814 0.16996956 0.66759805 2.26572047]

Process finished with exit code 8

T 06041 7806295904235,0.8322997000273251, 1. 9326703582150897, 3.9047014759700583,1.1078566466637918,0.8446€

P Version Control ~ ® Run S TODO @ Problems B Terminal 2= Python Packages @ Python Console

Figure 1
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Appendix C — Dynamic stability analysis of Geiger dome (RG

6B) (Mathematica environment)

ClearAll["Global «"];

MKlin(pl , p2 , % ,¥ ,Z ,e ,a ,le ,loss , toss_, 1gss ] := Module|

(=
q - wektor przemieszczen, dla liniowych zagadnien musi byc @,
dla nieliniowych jest inicjowany ostatnimi przyblizeniami;

pl,p2 - wektory numerow poczatkowych i koncowych wezlow pretow;
X,¥,Z - wektory wspolzednych wezlow;
e - wektor modulow Younga poszczegolnych pretow;
a - wektor pol przekrojow poprzecznych poszczegolnych pretow;
sne - wektor sil samonaprezen elementow (pretow);
msne - mnoznik samonaprezen;
le - liczba elementow;
loss -  liczba odebranych stopni swobody;
toss - wektor odebranych stopni swobody;
lgss - liczba globalnych stopni swobody;
*)

{

K1, Ks, Kul, Ku2, Kge, Kg, T, u, wl, w2,

x1, v1, z1, x2, yv2, z2, x21, y21, z21, 1xy, 1, sa, ca, sb, s,
cb, T1, se, gl, qZ, ql1, ql2, dq, eall, ea2l, ea3l, sl, i,
j, I1, I2, wi, ko, wd, kd, wm, km, Tt, nkg, ii

}J

{

K1 = Table[®, {6}, {B}];

Kge = Table[®, {6}, {6}]; (wmacierz sztywnosci elemntu w ukladzie globalnym )
Kg = Table[®, {lgss}, {lgss}]; (wglobalna maciesz sztywnosci w«)

T = Table[®, {6}, {6}];

(#macierz transformacji elementu - z globalnego do lokalnegow)

Do|

wl=pl[[i]];
w2 = p2[[i]];
¥l =x[[wl]];
vl=y[[wl]];
1=z [wl]];
x2 = x[[w2]];
v2=y[[w2]];
z2 = z[[w2]];
®21 = (x2-x1);
y21 = (y2-y1);
z21 = (z2-z21);
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Ixy = 5qri[x21« x21 + v21 wy21];

1=5qrt[x21 «x21 +y21+y21:221«221]:

If[lxy | =@,

sa=2z21/1; ca=1xy /1; sb =y21 /1xy; cb = x21 / 1xy;

Tl ={{ca=cb, ca+sh, sa}, {-sb, cb, 8}, {-sa=«cb, -sa~sb, ca}},
T1 = {:.GJ EJ _1}J [_1.1 9_-. 'E]-_-. {H, 1: 9}}

13

Se={Iwwl-2,3swl-1, 3aowl, 3ew2-2, 3ww2-1, 3wvwu2};

eall =e[[i]] «a[[1]] /1;
ea2l = eall / 1;

ea3l = ea2l / 1;

Do [Do [Do[Do |

{

Wi=3w (wd-1);

ko =3« (kd-1);

T[[wi+wm, ko+km]] = T1[ [wm, km]];

)

s {kmy 3}], {wmy 337, {(kd, 23], {wd, 2}
1:

Do[Do|

{
T[[wm, km]] = T[[km, wm]] = 8;
)
L ‘.km.'l 41- 6]’]# {I"“IJ 1." 3}
I3

K1[[1,1]] =K1[[4, 4]] = eall;
K1[[4,1]] =KL1[[1,4]] =-K1[[1,1]];
Kge = K1;

Tt = Transpose [T] ;

Kge = Tt.Kge.T;
Do[Do[

[
Keg[([se[[wm]], se[[km])]]] += Kge[ [wm, km]];
)
s {(km, 6}], {wm, 6}
]
.:l.'l
{i, le}
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13

nkg = Kg;
Do |

!
ii = toss[[1i]];
Do|

(

nkg[[ii, 11 = @;

nkg[[J, ii]] = @;
Y,

{i, lgss}
13
nkg([[id, 1i]] = 1;

Vs
{i, loss}
1;
nkg
)
13
MKgeom([pl ,p2 ,x_,¥ ,ZI_,e_,a_, sne_, msne_, le , loss_, toss_, 1gss_| := Module|[

{

K1, Ks, Kge, Kg, T, u, wl, w2, x1,

vl, z1, x2, v2, z2, x21, y21, z21, 1xy, 1, sa, ca, sb, s,
ch, T1, se, ql, q2, ql1, ql2, dq, eall, ea2l, ea3l, s1, i,
j, I1, I2, wi, ko, wd, kd, wm, km, Tt, nkg, ii

i

{

Kl = Ks = Table[@, {6}, {6}];

Kge = Table[®, {6}, {6}]; (+macierz sztywnosci elemntu w ukladzie globalnym )
Kg = Table[®, {1lgss}, {lgss}]; (+~globalna maciesz sztywnosci )
T = Table[@, {6}, {6}];

(#«macierz transformacji elementu - z globalnego do lokalnegos)
u = Table[®, {3}];

Do |

{
wl=pl[[i]];
w2 =p2[[i]];
¥1 = x[[wl]];
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¥l=y[[wl]];

zZl=z[[wl]];

X2 = x[[wW2]];

¥2=y[[w2]];

22 =z [w2]];

®21 = (x2-x1);

¥2l = (y2-y1);

z21 = (z2-21);

Ixy = Sqri[x21 «» x21 + v21 « y21];

1=5qri[x21 «x21 +y21l»y21l+221wz21];

Se={Iwwl-2, 3ewl-1, 3wwl, 3ew2-2, 3ww2-1, Iwvul};
{wstoponie swobody elementw)

s=sne[[i]];
sl=msne«s /1;

Do[Ks[[F, 1] =s1, {3, 6}];

Do[Ks[[J, 3+3]) =Ks[[J+3,311 =-5s1, {3, 3}1;

Kge = Ks;

Do[Do |

{
Kg[[se[[wm]], se[[km]]]] += Kge[ [wm, km]];
)
s {km, 6}], {wm, 6}
]
s
{i, 1e}
1;

nkg = Kg;
Do |

i
11 = toss[[1]];
Do |

{
nkg[[ii, j§]) = @;
nkg[[], ii]] = &;
)
{i, lgss}
I3
mkg[[ii, 11]] = 1;
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)
{i, loss}
1;
nkg
)
1s
MMpl_,p2 , % ,¥v ,Z_,e_,a_,ro_,le , loss_, toss_, 1gss_] := Module|
{#ro - wektor gestosci,
le = liczba elementow; «)

{wl, w2, x1, x2, v1, v, z1, z2, %21, v21, 721, 1, se, Me, M, nM, i, j, ii, wm, km},
(M =Table[®, {1g55}, {1lgs5}];

Do |
wl=pl[[i]];

w2 =p2[[i]];
xl=x[[wl]];

yl=y[[wl]];
21 =z[[wl]];
x2 = x[[w2]];
y2 =y[[w2]];
22 = z[[w2]];

x21 = (w2 -x1);
¥21 = (¥y2-y1);
721 = (z2-21);
1=5qrt[x21 «x21 +v21 «v21 + 221 +221];

se={3wwl-2, 3awl-1, 3wwl, 3ww2-2, Isw2-1, 3Iwwl};
Me =ro[[i]] wa[[i]]«1/6+{{2,0,0,1,8, 0},
{@, 2,80,8,1, 8},

(@, @, 2,0,0, 1},
{1, @, @, 2, B, B},
{@6,1, 0,0, 2, 8},
{@,@8,1,8,8, 2}};
Do [Do [
M[[se[[wm]], se[[km]]]] +=Me[ [wm, km]];

» {km, 68}], {wm, 6}
13

{i, le}];
nM = M;
Do |

[
ii = toss[[1]];
Do|

{
nM[[ii, 3]] = @;
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nM[[j, ii]] = @;
s
{J, lgss}
13
nM[[ii, ii]] = 1;
1
{i, loss}
13
nM
]

13

Sily[tob_, si_, sne_, msne_, le_, lgss_, pl_, p2_, ®_, ¥_, Z_]| := Module|

(T, £, i, 3, wl, w2, x1, v1, 71, =2, v2, 72, x21, yv21, 721,
1xy, 1, sa, ca, sb, cb, T1, ms, wi, wd, ko, kd, wm, km, Tt, pp, se, p},

{«tob - tablica numerow obciazonych stopni swobody - sily zewnetrine;
si =

tablica wartosci sil zewnetrznych odpowiednich stopniom swobody z tob; «)

(

T = Table [@, {6}, {6}];

f = Table [®, {6}];

p = Table [@, {1gss5}];

(wobciazenie zewnetrzne w ukladzie globalnyms)
Do[p[[tob[[i]]]] +=si[[i]], {i, Length[tob]}];

SilyPrety[ap_, pl_, p2_, % , ¥ _,Z_, e _,d_, le_, loss_, toss_] := Module|

{wqp - wektor przemieszczen, dla liniowych zagadnien musi byc @,
dla nieliniowych jest inicjowany ostatnimi przyblizeniamij;e)

{
q, 5P, 1, 3, T, u, wi, w2, =1, yi, z1, %2, yv2, 22, x21, v21, z21, 1xvy, 1, sa, ca, sb,

cb, T1, se, ql1, q2, ql1, ql2, dq, 11, 111, eps
b

{
T = Table[®, {6}, {6}];

(wmacierz transformacji elementu - z globalnego do lokalnegow)
SP = Table[®, {1e}]; (wwektor sil w pretachs)

u = Table[@, {3}];
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q = ap;
Dofq[[tess[[i]]]] =@, {i, loss}];

Do [

pPL[i]];
P2[[1]11;
¥1 = x[[wl]];
yil=y[[wl]];
71 =z [wl]];
x2 = x[[wW2]];
¥2=y[[w2]];
22 =z [W2]];
¥21 = (x2-x1);
¥21 = (y2-¥1);
221 = (z2-21);
1wy = Sqri[x21 « x21 + v21 «a v21];

Wl
w2

1=5qrt[x21 «+x21 +y21 +y21:221«221];

If[lxy |=@,

sa=z21/1; ca=1xy/1l; sb=y21/1xy; cb = x21 / 1xy;
T1={{ca=cb, ca«sb, sa}, {-sb, cb, 8}, {-saw=cb, -sa~sb, ca}},
T1 = {:.EJ EJ _1}J ‘._1.'! 9: 'ﬂ]-_-. :.EJ 1J B}J’

13

S8 ={Iwwl-2,3ewl-1, 3ewl, 3ew2-2, 3ww2-1, Iwvw2};
{«stoponie swobody element)

gl = {{q[[se[[1]]]]}, {al[sel[2]]]]}, {allse[[3]1]]]}};
q2 = {{aql([se[(4)1]1])}, {allsel[>]1]11}, {allse([61]1]11}};

qll =T1l.q1;
ql?2 = T1l.q2;
dqg = ql2 - gl1;

Dofu[[j]] =da[[d, 111, {3, 3}];

(wzdjecie, poczatekw)
11 =5Sqri(ul[2]] »u[2]) +u[[3]] «u[[3)] +(L=su[[L1]])) » (1+u[[1]])];

111 = 11 /1;

eps = (111 « 111 -1) / 2;

SPI[1]] =e[[1]] »a[[1]] »eps «» 111
(ezdjecie, koniecs)
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s
{i, 1e}
1i

5P

)
13

MEK[g_,pl ,p2_,x ,¥ ,Z_,& ,a_,sne_,msne_, le_, loss_, toss_, lgss ] := Module|

{

K1, Ks, Kul, Ku2, Kge, Kg, T, u, wl, w2,

x1, vi1, z1, x2, yv2, z2, x21, y21, z21, 1xy, 1, sa, ca, sh, s,
ch, T1, se, g1, q2, qli, gql2, dq, eall, ea2l, =a3l, s1, i,
j, I1, 12, wi, ko, wd, kd, wm, km, Tt, nkg, ii

b

{

K1l = Ks = Kul = Ku2 = Table[@, {&}, {6}];

Kge = Table[@, {6}, {6}]; (+«macierz sztywnosci elemntu w ukladzie globalnym )
Kg = Table[®, {1lgss}, {1lgss}]; («globalna maciesz sztywnosci )

T = Table[@, {6}, {6}];

(wmacierz transformacji elementu - 7 globalnego do lokalnegow)

u = Table[@, {3}];

Do |

wl=pi[[i]];
w2 =p2[[i]];

¥l =x[[wl]];
yi=y[[wl]];
z1=z[[wl]];
¥2 = x[[w2]];

v2=y[[wl]];

2 = z[[w2]];

¥21 = (x2-x1);

v21 = (y2-y1);

z21 = (z2-121);

Ixy = Sqri[x21 « x21 + y21 =« y21] ;

1=>5qri[x21 «»x21 +y21 »y21+ 221 »221];

If[lxy != @,

sa=z21/1; ca=1xy /1l; sb = 21 /1xy; cb = x21 / 1xy;
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T1
Ti

IH

{{ca=cb, ca«sb, sa}, {-sb, cb, B8}, {-s5a«cb, -s5a«sb, cal},
{{e, @, -1}, {-1, @, @}, {0, 1, 8}}

Se={3awl-2, 3swl-1, 3awl, 3ew2-2, 3aw2-1, 3+u2};
{wstoponie swobody elementw)

ql = {{a([se([1]110}s {allsel[2]10011}, {allsel(311011}};
q2 = {{a[[se([4]111}, {allsel[51011%, {fallsel(B1101}};

qll = Ti.q1;
ql2 = Tl.q2;
dg =ql2-qll;

eall =e[[i]]~a[[1]] /1;
ea2l = eall / 1;
ea3l = ea2l / 1;

KL[[1, 1]] = KL[[4, 4]] = eall;
KL[[4, 1]] =K1[[1,4]]) =-K1[[1,1]];

s=sne[[i]];

sl =msne s /1;

Do[u[[3]] =dq[[d, 111, {3, 3}]1;

(wsl=ealleuf [1]];%)
Do[Ks[[3, 31] =51, {j, B}];

Do[Ks[[§, 3+3]) =Ks[[J+3,3]] =-s1, {3, 3}];

I1={
{3wul[1]], w[[2]], u[[3]]},
{2«ul[2]], 0@, @},
{2wu[[3]], @, 8}

}s

I2 = {
(u([1]] »u[[1]], u[[1]] »ul[2]], u[[1]] »u[[3]1]},
{u[[1]] *»u[[2]], u[[2]] »ul[2]], u[[2]] »u[[3]]},

ks

{ul[1]] »u[[30], u[[2]] »u[[3]], u[[3]] =u[[3]]}

Do (Do [Do[Do|

{

Wi=3w (wd-1);

ko = 3« (kd-1};

Kul[[wi+wm, ko+km]] = ea2l « I1[ [wm, km]];
Ku2[[wi+wm, ko+km]] =ea3l «I2([[wm, km]];
{wpoprawiones)
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T[[wl+wm, ko+km]] = T1[ [wm, km]];

)

» {kmy 341, fwm, 337, (kd, 2}], {wd, 2}
13

Do[Do|[

!
Kul[ [wm, km] ] = -Kul[ [wm, km]];
Kul[ [km, wm]] = -Kul[ [km, wm]]:
Ku2 [ [wm, km] ] = -Ku2 [ [wm, km] ] ;
Ku2[ [km, wm] ] = -Ku2 [ [km, wm]];
T[[wm, km]] = T[[km, wm]] = @;
)
s fkm, 4, 6}], {wm, 1, 3}

13

Kge =K1 +Ks + Kul /2. +Ku2 /2.
Tt = Transpose [T];

Kge = Tt.Kge.T;
Do[Do [

!
Kg[[se[[wm]], se[[km]]]] == Kge[ [wm, km] ] ;
)
s {km, 637, {wm, 6}
1
Vs
{1, le}
13

nkg = Kg;
Do|

[
ii = toss[[1]];
Dof

{
nkg([ii, 11 = @;
nkg[[j, ii]] = 8;
¥,
{3, lgss}
13
nkg([ii, ii1]] = 1;
T
{1, loss}
1;
nkg
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)
13

MKsty([(gq_,pl _ ,p2_,x ,¥ ,I_,e_,a_,sne_, msne_, le_, loss_, toss_, 1gss_] := Module|

K1, Ks, Kul, Ku?, Kp, Kge, Kg, T, u, wil,

w2, x1, v1, z1, x2, yv2, z2, x21, y21, z21, 1xy, 1, sa, ca, sb, s,
cb, T1, se, ql1, q2, ql1, gql2, dq, =all, ea2l, ea3l, s1, su,

i, j, I1, 12, wi, ko, wd, kd, wm, km, Tt, nkg, ii

ba

{

Kl = Ks = Kul = Ku2 = Kp = Table[@, {6}, {6}];

Kge = Table[®, {6}, {6}]; (wmacierz sztywnosci elemntu w ukladzie globalnym )

Kg = Table[®, {lgss}, {1gss}]; («globalna maciesz sztywnosci «)
T = Table[®, {6}, {6}];

{#macierz transformacji elementu - z globalnego do lokalnegow)
u = Table[@, {3}];

Do

wl=pil[[i]];
w2 =p2[[i]];
X1 =x[[wl]];
vl=y[[wl]];
zZl=z[[wl]];
x2 = x[[w2]];
v2=y[[w2]];
2 =2[[w2]];
w21 = (%2 -x1);

¥21 = (y2-y1);
z21 = (z2-21);
Ixy = 5qri[x21 «» x21 + v21 wy21];

1=5qrt[x21 «x21 +y21wy21l:221wz221];

If[lxy | =@,
sa=2z21/1; ca=1xy /1; sb = v21 / Ixy; cb = x21 / 1xy;
Tl ={{ca=cb, ca«sb, sa}, {-sb, cb, 8}, {-sa=«cb, -saw~sb, ca}},

Tl = {lﬂj EJ _1}J [_1.1 B_-. 'E]-_-. lﬂj 1: a}]’
I3

se={3wwWl-2,3%wl-1, 3wwl, 3ew2-2, 3ww2-1, 3 wvwu2};

{«stoponie swobody elementw)
gl = {{q([se[[1]]1]]1}, {al(se([2]10]]%, {allse([3]1]101}}:
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92 = {{al[se[[4]]1]1]}, {allse[[5]111]1}, {allse[[B]1]]}};

qll = T1.q1;
ql? = Ti.q2;
dg = ql2 - gli;

eall =e[[1]] wa[[1]] /13
ea?l = ealdl ;/ 1;
ea3l = ea2l / 1;

K1[[1, 1]] =K1[[4, 4]]
KL[[4, 1]] =KL[[1, 4]]

eall;
-K1[[1,1]];

s=sne[[i]];
sl =msne »s /1;

Do[u[[3]] =da[[3, 111, {3, 3}1;

(wsl=eallwu[[1]];w)
Do[Ks[[3, 311 =s1, {3, B}];

Do[Ks[[3, 3J+3]] =Ks[[F+3,]]] =-5s1, {J, 3}];

su= (U[[2]] w+u[[1]] =+u[[2]] »+u[[2)] +u[[3]] »u[[3]]/2);
Do[Kp[[d, J]1] = sus=ea3l, {j, 6}];

Do[Kp[[3, 3+3]] =Ks[[F+3,3J]] = -suw=ea3l, {j, 3}];

I1-={
{3wul[1]], u[[2]], u[[3]]],
ful[2]1, u[[1]], @},
{ul[3]], 0@, ul[1]]}

ti

I2={
ful[1] ) wu[[1)], u[[2]] »u[[2]]), ul[1]]) «u[[3]]},
{ul[1]] «+u[[2] ), u[[2]] »u[[2]], w[[2]] «u[[3]]},
ful (1)) wu[[3)], u[2]) wu[[3]], w[[3]]) =u[[3]]}
}s

Do [Do [Do [ Do |

{

Wi=3w (wd-1);

ko =3« (kd-1);

Kul[[wis+wm, ko+km]] = eaZl » I1[ [wm, km]];
Ku2 [ [wi+wm, ko+km]] = ea3l«I2[[wm, km]];
{wpoprawiones)

T[[wi+wm, ko+km]] = T1[ [wm, km]];
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)

» Lkmy 3}], {wm, 331, {kd, 2}], {wd, 2}

13
Do [Do |

[
Kul[ [wm, km] ]

Kul[ [km, wm] ]
Ku2 [ [wm, km] ]
Ku2 [ [km, wm] ]

-Kul[ [wm, km]];
-Kul[[km, wm]];
-Ku2 [ [vm, km] ] ;
-Ku2[[km, wm]];

T[[wm, km]] = T[[km, wm]] = @;

)|

& ‘.k‘m.'l 4! E}JJ {ml 1.1 3}

IH

Kge = K1 + Ks + Kul + Ku? = Kp;

Tt = Transpose [T];

Kge = TE.Kge.T;
Do[Do [

(

Kg[[se[[wm]], se[[km]]]] +=Kge[ [wm, km]];

]

s {kmy 6}], {wm, 6}

]

¥,

{i, le}
1;

nkg = Kg;
Do

(
ii = toss[[1]];
Do |

{

nkg[[ii, 1) =@;
nkg[[J, ii]] = @;

),
{3, lgss}
1;

nkg([[ii, ii]] = 1;

¥

{i, loss}
1
nkg
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Newton([sl_, tsl_, qg_, p_, P1_, p2_, ¥_, ¥_,
I_,e_,a_,sne_,msne_, le_, loss_, toss_, 1gss_] := Module|

(= tsl - tablica numerow sledzonych przemieszcien; =)
(KK, krs, ws, qp, tkrs, &, ff, tz, is, stop, fp, f, g1, KK1, f1, eps, dp, i, j, q, tpo},
q =4qg;

is = @;

Ws = 18" (-8); (wwarunek stopus)

KK = MK[q, pl, p2, %X, ¥, Z, &, &, sne, msne, le, loss, toss, 1gss);
aP = q;

q = LinearSolve [KK, pl;

(wq=Inverse[KK].p;w)

If[sl =1,
Print ["iteracja ", is];
tpo = Table[@, {Length[ts1l]}];
Do[tpo[[i]] = q[[tsLl[[1]]]],
{i, Length[ts1]}];
Print [ScientificForm[tpo] ]

IH

A = Table[®, {1gss}, {lgss}];
ff = Table[@, {lgss}];

{«tablica znacznikow odebrania stopnia swobody 1-nieodebrany, @-odebranyw)
tz = Table[1, {lgss}];: Do[tz[[toss[[1]]]] =@, {i, loss}];

stop = 1;

While| stop > ws,
is+43
KK = MK[q, pl, p2, X, v, Z, €, @, sne, msne, le, loss, toss, 1gss];
T = KK.q;

fp=Ff-p;

A = MKEsty([q, pl, p2, %, ¥, Z, &, &, sne, msne, le, loss, toss, 1gss];
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eps = LinearSolve[4, fpl;

(weps=Inverse[A].fp;«)

ap = qs
q=qp - €ps;
If[sl =1,

Print["iteracja ", is]:

tpo = Table [@, {Length[ts1]}];

Doftpo[[i]] =q[[ts1[[1]]]],
{i, Length[ts1]}];

Print [ScientificForm[tpo] ]

I

dp = @;
Do[(dp +=eps[[J]] =eps[[j]]), {3, 1lgss}];

stop = 5qrt(dp];
If[is » 100000, Print["Przekroczona liczba dopuszczalnch iteracji™];
Break[]];

ismax = 1s;
)

I

q

Is

NewtonRaphson[sl_, ts1 ,qg_,p_,pl_,p2_, x_,
v ,I_,e_,a_,sne_,msne_, le_, loss_, toss_, 1gss_|] := Module[

{q, ws, qp, KK, f, dQ, stop, is, lpwe, dq, dp, i, tpo},
q=4qg; («przemieszczeni oczatkowe, IZerowew)
wWs = 18" (-4); («warunek stopus)

is =@;

{erozwiazanie liniowe - pierwsza iteracja, poczatekws)

ar = q; (w«poprzednie przyblizenie rozwiazaniaw)

KK = MKstv[q, pl1, p2, X, V, Z, &, a, sne, msne, le, loss, toss, 1gss];
q = LinearSolve [KK, p];

If[sl =1,
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Print ["iteracja ", 1s];

tpo = Table[@, {Length[ts1]}];

Do[tpo[[i]] =q[[ts1[[1]]1]],
{i, Length[ts1]}];

Print [ScientificForm[tpo]]

I1:

KK = MK [q, pl1, p2, X, ¥, Z, &, &, sne, msne, le, loss, toss, 1gss];
f=KK.q;

dj = p-f;

{srozwiazanie liniowe - pierwsza iteracja, koniecs)

{«dlugos wektora przyrostu obciazenia, poczatekw)
dp = @;
Do[(dp +=dQ[[3]] +dQ[[3]1]), {3, 1EsS}]s

stop = Sqrt[dp];

{«dlugos wektora przyrostu obciazenia, konicw)

(#iteracyjny proces MR, poczatekw)
While| stop = ws,

{

is++}

KK = MKsty|[q, pl, p2, %, v, Z, &, a, sne, msne, le, loss, toss, 1lgss];
dq = LinearSolve [KK, dQ];

q=q+dq;

If[(s1l =1,

Print["iteracja ", 1s];
tpo = Table [®, {Length[ts1]}];
Do(tpe[[i]] =q[[ts1[[1]]]],
{i, Length[ts1]}13:
Print [ScientificForm[tpo]];
I
KK = MK[q, pl, p2, ¥, ¥, Z, €, &, sne, msne, le, loss, toss, 1gss];

f=EKK.q;
d} =p-f;
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dp = @;
Do[(dp +=dQ[[F]] «dQ[[F]]), {F, 1gss}];

stop = Sqrt[dp];
If[(is » 50088, Print ["Przekroczona liczba dopuszczalnch iteracjii™];

Break([]];

str = OpenRead [ToFileName [ {NotebookDirectory[]}, "plik_wsadowyR6B.txt"]];
le = Read[str, Number] ;
1w = Read [str, Number] ;

X=y=7Z=Table[@, {1w}];

Do[x[[is]] = Read[str, Number], {is, 1lw}];

Do[y[[is]] = Read[str, Number], {is, 1lw}];

Do[z[[is]] = Read[str, Number], {is, 1w}];

pl=p2 =e =a = sne = Table[@, {le}];

Do[pl[[is]] = Read[str, Number], {is, 1e}]:

Do(p2[[is]]

Read [str, Number], {is, 1le}]:

Dofe[[is]] = Read[str, Number], {is, 1le}];
Do[a[ [is]] = Read[str, Number], {is, 1le}l];
loss = Read [str, Number];

toss = Table[@, {loss}];

Do[toss[[1s]] = Read[str, Number], {is, loss}];
Do[sne[[1s]] = Read[str, Number], {is, le}];
Close[str];

ro = Table [786@, {le}];

Wy@ = sne;
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lgss = 3 » 1w;

msnei = {30};

P=-1;

Pt = Range[@, 1, 1 /3] «@.75«P

qq = qq2 = mSwP = mF = mOmega = Table [@, {Length[msnei]}];

qqe? = mOmega® = Table[@, {Length[msnei]}];

qq0@

qq? = qq2¢ = Table[®, {Length[Pt]}];
mOmega? = mOmega3 = Table[@, {Length[msnei]}, {Length[Pt]}];

q@ = Table[@, {lgss}];

tob = {1s3}
tsl = {24« 3}; («tablica sledzonch stopni swobodyw)
il = P; (wobciazenie w kiloNiutonachs)

Do|[

msne = msnei [ [ii1]]; («mnoZnik stanu samonapreienias)
Print ["mnoZnik ", msne];

pd = Table[@, {lgss}];

KK = MK [q@, pl1, p2, X, ¥, Z, &, &, sne, msne, le, loss, toss, 1gss];
q92 = LinearSolve [KK, p@];

qqe2[[ii]] = q@2;
If[ii =1,

qea
Qe =
Newton[@, ts1, qq@[[ii-1]], p@, pl, p2, %, v, Z, &, &, sne, msne, le, loss, toss, 1lgss)

Newton[@, ts1, qb2, p@, pl, p2, %, v, Z, &, 4, sne, msne, le, loss, toss, 1gss],

1;
qq@ [ [1i]] = qoa;

tpo@ = Table [@, {Length[tsl]}];
Do[tpoB[[i]] = q@@[[ts1[[1i]]]],

{i, Length[ts1]}];
Print ["wyniki ", ScientificForm[tpo@]];

m

Print ["iteracja ", ismax]:
Print["q=", q@@];

(ewewwsswewwwsily W pretachesssawswsasnnw)

197



Appendices - Appendix C

SwiPg
550 = SwWP@ + msne » sne;

SilyPrety[q@@, pl, p2, %, v, £, &, a, le, loss, toss];

Print ["sily w pretach ", ssf@];

(wsprawdzenie, poczatekw)

KK = MK [q@&@, pl, p2, x, ¥, Z, &, &, sne, msne, le, loss, toss, 1gss];
Sly = KK.qgoa;

prog = 18" (-3); (wponizej tej wartosci elementy beda zerowanes)
Do[If[Abs([S1y[[i]]] < prog, S51y[[i]] = @], {i, lgss}];

Print ["spr ™, N[S51y, 311;

(#sprawdzenies)
(wdynamikaw)
Kdyn@ = MK [g@, p1, p2, %, v, 2, &, &, s5f@, 1, 1e, loss, toss, 1lgss];
M=MM[pl, p2, %, v, 2, &, &, Mo, le, loss, toss, 1gss];
omega® = Sort[ (Eigenvalues [ {Kdyn@®, M}] « 1000) *8.5 /2 /Pi];
For[d = Length [omega@®] , d > @, d--,
{If[Abs [omegad [ [d]] -5.8329] <« 0.0001, omegad | [d]] = Sequence[]]}];
mOmegad [ [11] ] = omegad;
Print ["czestotliwoscl drgan wlasnych”, omega@];
51 = Table[sil, {Length[tob]}]:
Do[si[[i]] =sil, {i, Length[tob]}];
p = 5ily[tob, si, sne, msne, le, lgss, pl, p2, %, ¥, 2]}
KK = MK [g@&, p1, p2, x, v, 2, &, &, sne, msne, le, loss, toss, 1gss];

q2 = LinearSolve [KK, p];

qq2 [ [ii]] = q2;
If[ii=1,

q = Newton [@, ts1, q2, p, p1, p2, X, ¥, Z, &, &, sne, msne, le, loss, toss, 1lgss],

q = Newton (@, ts1, qq[(ii-11], p, pl, p2, %, Vv, Z, €, &, sne, msne, 1le, loss, toss, 1gss)

1;
qq[[ii]] =q;

(«macierzew)

MacSty = MKsty|[q, pl, p2, x, v, Z, &, &, sne, msne, le, loss, toss, lgss];
Macsie = MK [q, pl, p2, %, ¥V, Z, €, &, sne, msne, le, loss, toss, lgss);
tpo = Table[@, {Length([tsl]}]:

Dol[tpo[[i]1] =q[[tsl[[i]]]1],

{i, Length[ts1]}];
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Print ["wyniki ", ScientificForm[tpo]];

m

Print ["iteracja *, dismax];

Frint ["q=", q];

(wwwwwwwewewnSily w pretacheswswsswwsswas)

SwP = SilyPretv[q, pl, p2, %, ¥, Z, &, &, 1le, loss, toss]:
s55f = SwP + msne » sne;

Print ["sily w pretach ", ssf];

mSWP [ [1i1]] = SwP;

(wsprawdzenie, poczateks)

KK = MK [q, p1, p2, x, ¥, Z, &, &, sne, msne, le, loss, toss, 1gss];
5ly = KK.q;

prog = 18" (-3); («ponizej tej wartosci elementy beda zerowanes)
Do[If[Abs[S1y[[i]]] < prog, S1y[[i]] = @], {i, 1lgss}];

Print ["spr ", N[S1y, 3]];

(wsprawdzenies)

(wdynamikaw)
Kdyn = MK [g@, pl, p2, X, v, Z, &, &, s5f, 1, 1le, loss, toss, 1gss];
Kg = MKgeom[pl, p2, %, v, Z, &, &, ssf, 1, 1le, loss, toss, 1gss]);
Kl = MKlin[pl, p2, x, v, 2, €, &, le, loss, toss, lgss];
M=MM[pl, p2, %, ¥, Z, &, &, o, 1le, loss, toss, 1lgss];
omegal = Sort[ (Eigenvalues [ {Kdyn, M}] « 180@) 0.5 /2 /Pi];
For[d = Length [omegal], d > @, d--,

{If[Abs [omegal[[d]] -5.8329] < 0.8081, omegal| [d]] = Sequence[]]}];
mOmegal[ [11]] = omegal;
Print ["czestotliwosci drgan wymuszonych™, omegal];
Do |

513 = Table[ (P +@.5 « Pt[[111]]), {Length[tob]}];

Do[si3[[1]] = (P+®@.5Pt[[111]]), {i, Length[tob]}];

5ily[tob, si3, sne, msne, 1e, lgss, pl, p2, X, ¥, Z1;
Table[®@., {1gss}];

p3
q3

Print [Pt[[1i111]];
If[iii =1,

q3 =

Mewton([@, ts1, qq[[ii]], p3, pl, p2, ¥, ¥, Z, &, &, sne, msne, le, loss, toss, 1gss],
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q3 = Newton [@, ts1, qq3[[1i1-1]], p3, pl, p2, x, v, Z,
e, a, sne, msne, le, loss, toss, 1gss|
1s
qq3 [ [iii]] = q3;
SwP3 = SilyPrety[q3, pl, p2, %, v, Z, &, a, le, loss, toss];
55f3 = SWP3 + msne = sne;

Kg3 = MKgeom [pl, p2, X, ¥, Z, e, &, 553, 1, 1e, loss, toss, 1gss];

omega? = Sort [ (Eigenvalues[{ (K1 +Kg3), M/ 4}] ~»1000) 0.5/ 2 /P1];

For[d = Length [omega2], d =@, d--,

{If[Abs [omegaZ[[d]] -14.2353] < ©.0001, omegaZ[ [d]] = Sequence[]]}];

mimega2 [ [11, 111]] = omegal;

Print ["czestotliwosc przy =Pt ", omega];

5id = Table[ (P -@.5 « Pt[[1ii]]), {Length[tob]}]:

Do[sid[[1i]] = (P-@.5«Pt[[iii]]), {i, Length[tob]}];

pd = 5ily[tob, sid, sne, msne, le, lgss, pl, p2, x, v, Z];
q4 = Table[@., {1lgss}];
If[iii =1,
q4 =
Mewton([@, ts1, qq[[ii]1], p4, pl, p2, ¥, ¥, Z, &, &, sne, msne, le, loss, toss, lgss
q4 = Newton [@, ts1, qqd[[1i1-1]], pd, pl, p2, x, v, Z,
e, a, sne, msne, le, loss, toss, 1gss|
1s
qgd [ [1ii]] = g4;
SwP4 = SilyPrety[q4, pl, p2, %, v, Z, &, a, le, loss, toss];
55F4 = SWP4 + msne = sne;

Kgd = MKgeom [pl, p2, X, ¥, Z, e, &, 554, 1, 1e, loss, toss, 1lgss];

omegal = N[Sort[ (Eigenvalues [{ (K1 +Kgd), M,/ 4}] «» 1088) ~8.5 /2 / P1], 4];

For[d = Length [omega3], d =@, d--,

{If[Abs [omega3[[d]] -14.2353] < ©.0001, omega3[[d]] = Sequence[]]}];

mimega3 [ [11, 111]] = omega3;
Print["czestotliwosc przy -Pt ", omega3];
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g-/@.,®.,8.,08.,0.,08.,8.,08.,0.,0.,,08,,8,,0.,8.,0.,8.,08,,08,,0.,08.,8.,

., 8., 8.,8.,8,,8., 0., 8.
.y 8., 8.,8.,8,,8., 0., 8.
., 8., 8.,8.,8,,8., 0., 8.
., 8., 8.,8.,8,,8., 0., 8.
@.,90.,8.,8.,8.,8., 0., 8.

oD @D @D

»

»

¥

»

b

@.,8.,08.,8.,8.,0.,8,,0.,0.,8.,0,,8.,8.,
@.,8.,8.,8.,8.,0.,8,,0.,0.,8., 0., 8.,8.,
@.,8.,08.,8.,8.,0.,8,,0.,0.,8.,0,,8.,8.,
@.,8.,8.,8.,8.,0.,8,,8.,0.,8., 0., 8,8,
@.,8.,08.,8.,08.,0.,8.,,0.,08.,0.,0.,8.,8.]

sily w pretach [-2.53623, -9.13843, -38., -2.53623, -9.13043, -38., -2.53623, -9.13843,
3@., -2.53623, -9.13943, -38., -2.53623, -9.13843, -30., -2.53623, -9.13043, -38.,
15.4273, 27.6386, 60.184, 11,
27.6386, 68.184, 15.4273, 27.
608.184, 11.1615, 27.5386, 68,
15.4273, 27.6386, 60.184, 11,
15,2174, 18.8696, 26.887, 52,
26.887, 52.1739, 15.2174, 18,

spr (@, @,@,@,8,8,8,0,08,8,0,0,8,0,0,8,0,0,8,0,0,0,0,0,0,08,0,0,0,0,08,8,8,

1615, 27.6386, 60.184, 15.4273, 27.6386, 6@.184, 11,1615,
6386, £0.184, 11.1615, 27.6386, 60.184, 15.4273, 27.6386,
184, 15.4273, 27.6386, 60.184, 11.1615, 27.6386, 60,184,
1615, 27.6386, 6@8.184, 15,2174, 18.8696, 26.887, 52,1739,
1739, 15.2174, 10,8696, 26.887, 52.1739, 15,2174, 10.8696,
8696, 26.887, 52.1739, 15.2174, 18.8696, 26.887, 52,1739}

é,8,0,98,08,9,0,0,8,0,8,9,90,9,90,08,98,0,8,06,0,0,9,08,90,8,8,8,8,8,8,
@,e,0,9,9,0,0,0,9,9,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,90,80,8,8,8,
a,@,e,9,8,e,0,8,@,90,0,9,0,0,9,9,98,0,0,8,8,0,9,8,0,8,8,8,8,8,8

czestotliwosci drgan wlasnych

4.71583, 4.9531, 4.9531, 6.83724, 6.96388, 6.96388, 7.84184, 7.85945, 7.59237, 7.59237,
7.82874, 7.82074, 8.93841, 8.93841, 18.539, 11.6654, 11.6654, 12.244, 12,4476, 12,5922,
12,5922, 12.6134, 12,6124, 13.7178, 14.5335, 14,912, 14,912, 17.9385, 25,2469, 25,2469,

29,8389, 42,0087, 99,4882, 99.5585, 98.5565, 112.761, 112.701, 118,694, 125.645, 125.645,

131.411, 189.65, 189.65, 288,977, 2008.977, 226.768, 251.439, 277.188, 277.108, 297.228,

297.228, 385.845, 314.6, 345,183, 353.508, 353.5088, 392,148, 392.148, 418,102, 410.182,
487.845, 487.845, 589,772, 538.57, 575.485, 575,485, 581.531, 594.773, 594.773, 614.918,

614.938, 623.711, 629.17, 636.58, 636.58, 663.661, 663.661, 667.932, £95.224, 733.471,

733.471, 875.768, 875.768, 915,084, 928,291, 941.738, 941.738, 1965.44, 19085.44, 1848.06,

1193.93, 1258.29, 1345.41, 1345.41, 1528.84, 15208.84, 1625.76, 1625.76, 1723.39,
1922.44, 1922.44, 2889.25, 2836.65, 2881.83, 2881.83, 2251.11, 2251.11, 2353.41}

wyniki [1.47832-18°%)

iteracja 2
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2.88193766,
8.@0182248,
8.888376403,
8., 8., 8.,

8.88112186,
8.BeB68676E,

g=

8.8808238742, 8., 8., 0.,

B.8888425233,
B8.0888146778,

5.18446 - 18 °, 9.808248543, ., 0., 8.,

7.11482 <183,

§.5495:.18°%,
2.49715+18°%,

8.88125361, 0.888331556,

8.888728157, @.

©.88818942, 0.808296686,
2.8025456, 0.800275457,
8.8006649561, ©.880372742, 7.86426 187,
2.88112344, 9.0068183019,
8.080687676, 0.000148948,

aas8a91%6a7,

8.888232885, 0.8288139497,

B.88271127,
0.98882%0808,

8.888248574, @.088304432,
@.88123441, 2.0888968307, @.88270995, A.200O227839,
8.888699743, &.888037915, ©.0888%0144, @.800144841,

1.88363 18",

5]

C.A7718 188,

@.88818355,

8.88254366,

8.88868272,

. 888228551,

8.8888676858,
0. 8828258485,

@.e0982838c03, 7.76445 10 5_. 8.888246987, 0.808293527,

B.89808523886, 2.81847 =18 EJ B.8@392416,

8.e881e7776,
8.ea8262787,

©.800246973, ©.800293548, 5.16294 18 %, @.9AA248528, @., 8., A.,

B.888331533,
B.8888919995,
B.e8aa1397a3,

sily w pretach

1.52947 =107, 9.@0147885,

@.08185581, 7.6995 18 %, 8.80392334,

8.208638187, 8.56022 18 B_, B.e@147832,

1.67786 =108 %, 9.@00442527, 8., 8., 0.,
©.80278967, 0.0080227067, @.00080425359, B.08271899,
©.000890085, 0.000144036, B.0000146721, B.00089875,

8.88112369, 0.080818225, 2.288228489,

8.0888687746, 0.000148944, 2.BB0O6TEEET,
@.088248586, 8.008384453, @.2000262442,

2.96582,

9.2687,

38.13231,

2.53371,

B.88123448,
8.8885998563,
B.08828865,
a
8.88112211,

2.000686836,
2.000238754, 8., 6., 8. |

@.80@25893, 3.47253-10 %, 0.pa844108,

8.888896718,
@.8a88378181,

7.72598 185,

.BB125368,
B.g@a72e82718,
B.888292055,

9,19563,

38.1182,

2.53315,

9.17268,
2.53371,
14,8616,
11.4651,
14,8344,
11.4534,
26,2694,
52,3537,

spr (@, @,
e, 8,
e, 8,
e, 8,

38.8932,
9.19563,

2.53274,

9.16559,

38.8872,

2.53315,

9.17268,

38.8932,

3@.1182, 14.8838, 27.3186, 60.0482, 11.4758, 27.8348, 68.3939,

27.3485,
27.8318,
27.3323,
27.8293,
52.3543,
14.6383,

@.999993, @, 0,0, 8, 8,0,0, 8,8, 0,0,0,0,08,0,0,8,8,0,0,0,80,0,a,
@,@8,8,8,8, 0,8,8,08,8,8,
@,@8,8,8,8, 0,8,8,08,8,8,
@,@8,8,8,8, 0,8,8,08,8,8,

68,8756,
68,3917,
50,8687,
&@.3988,
14,6372,
11.1655,

11.4534, 27.8293, 6@.3988, 14.8344, 27.3323, 68.0687,
14,8284, 27.3258, 6@.854, 11.4649, 27.8321, 68.3923,
11.4651, 27.8318, 6@.3917, 14.8616, 27.3485, 68,8756,
14,6483, 11.164, 26.2688, 52.3541, 14.6383, 11.1655,
11.1617, 26.2686, 52,3537, 14.6372, 11.1617, 26.2686,
26.2694, 52,3543, 14,6483, 11.164, 26.2688, 52.3541)

BJ L » ¥ » g ¥ g ) » » » BJ » » ¥ » ¥ ¥ ¥
a,
@

-
-
-
-

¥

-
-
-
-

=] =] B,8,e,8,8
=] =] B,8,e,8,8
=] =] B,8,e,8,8

I

- @ @
-

@ @ o
-
I

- @ @
-

- @ @
[

@ @ @
-

@ @ @
[

e, 8,8
e, 8,8
e, 8,8

@ oD
L]

1
BJ L » ¥ » g ¥ g ) » » » ¥ » » ¥ » ¥ ¥ I

czestotliwosci drgan wymuszonych

[4.78215, 4.9426, 4.94381, £.890046, 6.92813, 6.93206, 7.80574, 7.86777,
7.79383, 7.79473, 8.9469, 8.94741, 18.5546, 11.6585, 11.6594, 12,2527,

12,5404,
29,5844,
131.488,
297,229,
437.845,
614.938,
733.469,
1193.93,
1922.44,

12.5571,
42.0024,
189. 649,
305,044,
487,845,
£23.712,
875.766,
125@.29,
1922.44,

12.5682,
90,4871,
139.649,
314.598,
5@9.772,
£29.169,
875.766,
1345.41,
2089, 24,

7.574, 7.57539,
12.3889, 12.5459,
13.7364, 14.6044, 14,8289, 14.8322, 17.6186, 25.1126, 25.1147,
98.5497, 98.5493, 112.697, 112.697, 118.636, 125.5644, 125.644,
280.977, 280.977, 226.767, 251.44, 277.186, 277.187, 297.229,
345,188, 353.589, 353.5@9, 392,148, 392.148, 410.098, 410.099,
£38.57, 575.486, 575.406, 581.53, 594.766, 594.768, 614.938,
£36.581, 636.581, 663.661, 663.661, 667.923, 695.224, 733.469,
915.883, 928.287, 941.737, 941.737, 1085.44, 1805.44, 1848.86,
1345.41, 1520.84, 1520.84, 1625.76, 1625.76, 1723.39,

2836.64, 2881.83, 2881.83, 2251.11, 2251.11, 2353.41)

a, e,
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czestotliwosC przy

{9.4843, 9.8852, 9.

15.5861,
25,8937,
59,3688,
262.817,
594,458,
975.691,
1229,88,
1466.94,
2387.87,
3844.38,

15.5835,
25.1143,
84.8169,
379,298,
618,889,
975,691,
1247.42,
1751.53,
2588.58,
3844.88,

czestotliwosC przy

{9.4843, 9.8852, 9.

15.5861,
25,8987,
59,3688,
262.817,
594,458,
975.691,
1229,88,
1466.94,
2387.87,
3844.38,

.25

15.5835,
25.1143,
84.8169,
379,298,
618,889,
975,691,
1247.42,
1751.53,
2588.58,
3844.88,

czestotliwosC przy

{9.4@193,
15,5867,
25,8986,
59,3361,
262,816,
594,458,
975.691,
1229,88,
1466.94,
2387.87,
3844.38,

9.88347,
15.5844,
25,1831,
84.8168,
379,298,
618,889,
975,691,
1247.43,
1751.53,
2588.58,
3844.88,

czestotliwosC przy

{9.48686,
15,5918,
25,1874,
59,4828,
262.817,
594,457,
975.691,
1229,88,
1466.94,
2387.87,
3844.38,

B.5

9.88713,
15.5948,
25.1261,
84.8169,
379,298,
618,889,
975,691,
1247.42,
1751.53,
2588.58,
3844.88,

Pt

g8681, 13.6009, 13.8563, 13.8641, 14.8115, 14.1355, 15.148, 15.1588,
17.8948, 21.1893, 23,317, 23.3189, 24,5855, 24,7779, 25.8918,
27.4727, 29.2888, 29.6578, 29.6644, 35.2211, 58.2251, 58,2294,
181.@99, 181.1, 225,393, 225,393, 237,372, 251.288, 251.288,

17.8938,
25.1204,
188,814,
379,298,
629,196,
1819.54,
1258.34,
1751.53,
2698.82,
4018.49,

Pt

481.954, 481.954,
§98.376, 787.818,
1877.14, 1158.81,
1273.16, 1273.16,
1838.17, 1856.57,
2698.82, 3841.67,
4873.29, 4162.06,

453,535,
787.0818,
1158.81,
1327.32,
1883.47,
3941.67,
4162. 86,

582,879, 554,213, 554,213, 594.457,
784,296, 784.296, 8208.197, 828.199,
1163.@6, 1189.53, 1189.54, 1229,88,
1327.32, 1335.85, 1390.45, 1466.94,
1883.47, 2918.88, 2010.88, 2896.12,
3251.51, 3251.51, 3446.78,

4592.22, 4582.22, 4706.81}

g8681, 13.6009, 13.8563, 13.8641, 14.8115, 14.1355, 15.148, 15.1588,
17.8948, 21.1893, 23,317, 23.3189, 24,5855, 24,7779, 25.8918,
27.4727, 29,2888, 29.6578, 29.6644, 35.2211, 58.2251, 58,2294,
181.@99, 181.1, 225,393, 225,393, 237,372, 251.288, 251.288,

17.8938,
25.1204,
188,814,
379,298,
629,196,
1819.54,
1258.34,
1751.53,
2698.82,
4018.49,

+Pt

9.88439,
17.8976,
25,1696,
188,814,
379,298,
629,195,
1819.54,
1258.34,
1751.53,
2698.82,
4018.49,

Pt
9.88784,
17.8984,
25.1318,
188,814,
379,298,
629,196,
1819.54,
1258.34,
1751.53,
2698.82,
4018.49,

481.954, 481.954,
§98.376, 787.818,
1877.14, 1158.81,
1273.16, 1273.16,
1838.17, 1856.57,
2698.82, 3841.67,
4873.29, 4162.06,

13.5925, 13.8486,
17.8987, 21.1152,

453,535,
787.0818,
1158.81,
1327.32,
1883.47,
3941.67,
4162. 86,

13.8574,
23.3173,

582,879, 554,213, 554,213, 594.457,
784,296, 784.296, 8208.197, 828.199,
1163.@6, 1189.53, 1189.54, 1229,88,
1327.32, 1335.85, 1390.45, 1466.94,
1883.47, 2918.88, 2010.88, 2896.12,
3251.51, 3251.51, 3446.78,

4592.22, 4582.22, 4706.81}

14.864, 14.1392, 15,1448, 15.1479,
23.3193, 24.5893, 24.7657, 25.8826,

27.48, 29,2352, 29,64, 29,6481, 35.1454, 58.1966, 50.20814,

181.699, 181.899,
481.954, 481.954,
§98.376, 787.818,
1877.14, 1158.81,
1273.16, 1273.16,
1838.17, 1856.57,
2698.82, 3841.67,
4873.29, 4162.06,

13.6@95, 13.8642,
17.89132, 21.1839,
27.4661, 29.1919,

181.1, 181.1, 225.

481.954, 481.954,
§98.376, 787.818,
1877.14, 1158.81,
1273.16, 1273.16,
1838.17, 1856.58,
2698.82, 3841.68,
4873.29, 4162.06,

225,392,
453,535,
787.0818,
1158.81,
1327.32,
1883.47,
3941.67,
4162. 86,

13.8711,
23.3172,
29.6762,

394, 235,

453,535,
787.0818,
1158.81,
1327.32,
1883.47,
3941.68,
4162. 86,

225,393, 237.371, 251.288, 251.288,
582,88, 554,213, 554.213, 594,458,
784,296, 784.296, 8208.196, 828.198,
1163.@6, 1189.53, 1189.54, 1229,88,
1327.32, 1335.84, 1390.45, 1466.94,
1883.47, 2918.88, 2010.88, 2896.12,
3251.51, 3251.51, 3446.78,

4592.22, 4582.22, 4706.81}

14.8193, 14.1322, 15.1516, 15.154,
23.3189, 24,5821, 24.7987, 25.1015,
29,6816, 35.2983, 58.2548, 58.2585,
394, 237.374, 251.288, 251.288,
582,879, 554,213, 554,214, 594.457,
784,296, 784.296, §20.198, 828.2,
1163.@6, 1189.53, 1189.54, 1229,88,
1327.32, 1335.85, 1390.45, 1466.94,
1883.47, 2918.88, 2010.88, 2896.12,
3251.51, 3251.51, 3446.78,
4592.22, 4582.22, 4706.81}
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czestotliwosc przy +Pt

/9,39975, 9.88193, 9.88297, 13.5842, 13.8412, 13.851, 13.9968, 14.1433, 15.1418, 15.1453,
15.5756, 15.5798, 17.9@18, 17.9831, 21.1215, 23.3181, 23.32082, 24.5135, 24,754, 25.8738,
25.8831, 25.8927, 25.8993, 27.4878, 29.2411, 29.6229, 29.6328, 35.8713, 58.1693, 58.1746,
59,3848, 24.9168, 1%8.314, 181.899, 181.899, 225,392, 225,392, 237,369, 251.288, 251.288,
262,816, 379.298, 379,298, 481,954, 481.954, 453,535, 582,88, 554,212, 554,212, 594,458,
£o4.458, 618.889, 629,195, 698,376, 787.819, 747.819, 734,295, 784,295, 820,195, 828.198,
975,591, 975.691, 1819.54, 1877.14, 1150.81, 1150.81, 1153.84, 1189.53, 1189.53, 1229.88,
1229.88, 1247.43, 1253.34, 1273.16, 1273.16, 1327.32, 1327.32, 1335.84, 1390.45, 1466.94,
1466.94, 1751.53, 1751.53, 1838.17, 1856.57, 1883.47, 1883.47, 2918.88, 2810.88, 2896.12,
2387.87, 2588.58, 2698.82, 2698.82, 3841.67, 3841.67, 3251.51, 3251.51, 3446.78,

3844.87, 1844.88, 4018.49, 4873.29, 4162.86, 4162.86, 4582.21, 4582.22, 4766.81]

czestotliwosc przy -Pt
/9.4@962, 9.88927, 9.88987, 13.6183, 13.8725, 13.8784, 14.8274, 14.1292, 15,1554, 15,1575,
15.5979, 15.6085, 17.33873, 17.8881, 21.8988, 23,3178, 23.3193, 24,499, 24,804, 25,1116,
25.1166, 25.1387, 25.1437, 27.46, 29,1745, 29,6953, 29,6995, 35,377, 50.2856, 50,2888,
59,4331, #4.8169, 1%8.815, 181.1, 181.1, 225.395, 225,395, 237,376, 251.289, 251,289,
262.818, 379.298, 379,298, 481.954, 481.954, 453,535, 582,879, 554,214, 554,214, 594,457,
594,457, 618.889, 629.197, 698.376, 787.817, 787.817, 784.296, 784.296, 828.199, B28.2,
975.691, 975.691, 1819.54, 1877.14, 1158.81, 1158.81, 1163.86, 1189.53, 1189.54, 1229.88,
1229.88, 1247.42, 1258.34, 1273.16, 1273.16, 1327.32, 1327.32, 1335.85, 1390.45, 1466.94,
14566.94, 1751.53, 1751.53, 1838.17, 1856.58, 1883.47, 1883.47, 2010.88, 2810.88, 2896.12,
2387.87, 2508.58, 2698,.82, 26908.82, 3841.68, 30841.68, 3251.52, 3251.52, 3446.78,
3844,88, 3844,.88, 4018.49, 4873.29, 4162.86, 4162.086, 4582,22, 4582.22, 4706.81)

B.75

czestotliwoéc przy <Pt

{9,39777, 9.88861, 9.88176, 13.5762, 13.8341, 13.8449, 13.9899, 14.1476, 15.1392, 15.1431,
15.571, 15.5754, 17.9864, 17.9878, 21.1283, 23,3192, 23.3216, 24.5181, 24,7429, 25.8655,
25,8762, 25.8831, 25,8896, 27.4962, 29.2563, 29,5065, 29,6186, 34.9988, 58.1431, 58.1489,
59,275, 84.8168, 180.814, 181.899, 181.899, 225.391, 225,391, 237.368, 251.288, 251,288,
262.815, 379.298, 379.298, 481.954, 481.954, 453,535, 5@2.88, 554.212, 554,212, 594.458,
594,458, 618.889, 629.194, 9@.377, 787.819, 787.819, 784.296, 784.296, 828.194, B28.197,
975,691, 975.691, 1819.54, 1877.14, 1159.81, 1158.81, 1163.84, 1189.53, 1189.53, 1229.88,
1229.88, 1247.43, 1258.34, 1273.16, 1273.16, 1327.32, 1327.32, 1335.84, 1390.45, 1466.94,
1466.94, 1751.53, 1751.53, 1838.17, 1856.57, 1883.47, 1883.47, 2010.88, 2810.88, 2896.12,
2387.87, 2588.58, 2698,82, 2698.82, 3841.67, 3841.567, 3251.51, 3251.51, 3446.78,

3844,87, 3844,.88, 4018.49, 4873.28, 4162.86, 4162.86, 4582,21, 4582.22, 4706.81)

czestotliwosc przy -Pt
{9.41256, 9.8916, 9.89209, 13.6273, 13.881, 13.8859, 14.8358, 14.1266, 15.1596, 15.16132,
15,6043, 15,6065, 17.8846, 17.8853, 21.8943, 23,3189, 23.3201, 24.4963, 24.8179, 25.1224,
25,1265, 25.1519, 25,1563, 27.4545, 29,157, 29.7151, 29.7185, 35.4571, 58,3175, 58.3202,
59,4748, 84.817, 18@.815, 181.1, 181.1, 225,396, 225,396, 237,377, 251.289, 251.289,
262.819, 379.2798, 379.298, 481,954, 481.954, 453,535, 582,879, 554,214, 554,214, 594.457,
594,457, 618.089, 629,197, 698.376, 787.0817, 787.817, 784,296, 784,296, 826.2, 828.201,
975,691, 975.691, 1819.54, 1877.14, 1150.81, 1158.81, 1163.86, 1189.54, 1189,54, 1229, 88,
1229.88, 1247.42, 1258.34, 1273.16, 1273.16, 1327.32, 1327.32, 1335.85, 1398.45, 1466,94,
1466.94, 1751.53, 1751.53, 1838.17, 1856.58, 1883.48, 1883.48, 20108.88, 2018.88, 2096.12,
2387.87, 258@.59, 2698.82, 2600.82, 3841.68, 3941.68, 3251.52, 3251,52, 344678,
3844 .88, 1844, 88, 4018.49, 4873,29, 4162.06, 4162.86, 4582,22, 4582,22, 4706.81]

quybr = 24;
mMian = mGPS = m5C = m5Z = mWC = mWZ = muu = Table[@, {Length[msnei] }];

| P——— [T )
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mgll = mg22 = mg33 = mgqll = mgq22 = mgq33 = Table[®, {Length[msnei]}];

qx = qy = qz = Table[@, {Length[msnei]}, {Length[gq[[1]]] /3}];

qmax = gmax? = Table[@, {Length[msnei]}, {6}];

(«sily w pretachs)
Do

msne = msnel| [11]];

Print ["mnoznik ", msne];

uu = mSWP [ [11]] + wy@ « msne;

mua [ [11]] = uug

Print["sily w pretach ", uu];

(w#mianownik GPSs)

g=aqq[[ii]];
Do|

qe[[ii, 1idi]) =
qy[[ii, idd]] =
gz[[ii, iidi]) =
{iii, Length[q]

gmax [ [ii, 1]]

gmax [ [ii, 2]]

gmax [ [1i, 3]]

qmax [ [ii, 4]]

gmax [ [ii, 5]]

gmax [ [ii, 6] ]

gmax? [ [ii, 11]

gmax? [ [ii, 2]]

gmax2 [ [1i, 3]]

qmax2 [ [11, 4]] =

gmax2 [ [11, 5]]

gmax? [ [ii, 6]]

Print ["maksymalne przemieszcienie x

1008 « Max [qx [ [11,
1008 « Min [qux [ [1i1,
1098 » Max [qv [ [11,
1098 « Min [qv [ [11,
10989 « Max [qz [ [11,

1098 « Min[qz [ [1i1,

q[3«iii-2]];
q[3«iii-1]];
ql[3w«iii]],
{3}];

Flatten[108@ « qq2 [ [1i,
Flatten[10@@ « qq2 [ [1ii,
Flatten 1000 « qq2 [ [1ii,
Flatten[1000 « qq2 [ [11,
Flatten[1992 « qq2 [ [11,

Flatten[108@ « qq2 [ [11,

ALLIT1S

AlLl]1:

All]11:

All]]1];

ALLI]1s

ALLI]1s

3« Ordering [qx[ [id,
3w Ordering [qx[ [id,
3« Ordering [qv[ [1id,
3« Ordering [qy[ [1d,
3« Ordering[qz [ [11,

3« Ordering[qz [ [id,

All] ],
All]],
All] ],
All] ],
All] ],
All] ],

-11-2]11;

11 -2111;

-1)-1]11;

1] -1]11;

-1]1111;

11111;

1000 « Max [qx[[ii, A11l]]1], ", 1 = ", Flatten[Ordering[qx[[ii, A111], -1]11:
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Print ["minimalne przemieszczenie x ", 1000 « Min[qx[[1i, A11]]],
", 1 = ", Flatten [Ordering [qx[ [11, A11]1, 1]111;

Print ["maksymalne przemieszczenie v ", 1008 «Max[qy[[ii, A11]]],
", 1= ", Flatten[Ordering [qy[ [ii, A11]], -1111;

Print ["minimalne priemieszczenie v ", 1008 « Min[qyv([[ii, A11]]].,
", 1 =", Flatten[Ordering [qw[ [1i1, A11]), 1111;

Print ["maksymalne przemieszczenie z ", 1008 «Max[qz[[ii, A11]]],
", 1 = ", Flatten[Ordering[qz[ [11, A11]]), -1111;

Print ["minimalne przemieszczenie z ", 1009 « Min[qz[[ii, A11]]],
", 1 =", Flatten[Ordering[qz [ [ii, AL11]], 1111;

mian = qq[ [ii]].MK[qq[[ii]], p1, P2, x, v, Z, &, &, SNe,

msnei[ [1ii]], 1e, loss, toss, 1gss].qqf [1i1]];

mMian[ [11]] = mian;

Print ["mianownik GPS ™, mian];

mGPS([[1i]] = qq[[1]].MK[qq[[1]], pl, P2, x, ¥,

z, e, a, sne, msnei[[1]], le, loss, toss, lgss].qq([1]]) /mian;
Print["GPS ", mGPS[[ii]]];

qq2 [ [ii]]1[[3 » quybr - 2]] « 1088;

mqq22 [ [ii]] = qq2[[id])[[3 wquybr-1]] « 1008;

mqq33[[ii]] = qq2 [ [id] ] [[3 » quybr]] « 1808;

Print ["wybrane przemieszczenia II rzedu ", mgqlli([ii]), " ",

magli[[ii]]

mom

mgq22 [ [ii]], .
mgq33[[1i]1]1);

mgll[[1i]] = q[[3 » quybr - 2] ] «» 1008;

ma22 [ [ii]] = q[[3 » quybr -1]] « 1008;

mg33[ [ii]] = q[[3 » quybr] ] « 180@;

Print ["wybrane przemieszczenia III rzedu ™, mglli([[ii]), " ",

mg22 [ [(1i]1], ™ ",
mg33 [ [ii]] ]

msC[[11]] = SetAccuracy [Max[uu]l, 2];
Print ["maksymalna sila w ciegnach ™,

msC[[ii]]]3
Print [Ordering [uu, 1]];
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ri
r
r3
WZ

mSZ[[11]] = SetAccuracy [Mim[uul, 2];
Print ["minimalna sila w zastrzalach ",

mSZ[[ii]]1;
Print [Ordering[uu, -1]];

miC [ [11]] = SetAccuracy [Max[uu] /118.2, 4];
Print [ "wytezenie ciegien ",

meC [ [ii]]1;

nrz =3;
nn = {-187.1, -178.5, -224.3}; (+«nosnosci pretows)

rl=Join[uu[[3;;3]],uw[[6;; 6]],
uu[[95:9) ), uw[[12 352127 ), wu[[15 55 15]], uu[ (18 ;3 18]]);
r2 =Join[uu([[2 ;; 2], uu[[5;; 511,
uu[[8 53 8] ), uw[[11 ;5 137 ), wu[[14 55 147 ], wu[[17 ;5 17]]);
r3=Join(uu[[1;;1]), uul[4;;4]],
u[7 55 7] 0, uu[[10 ;; 18]], wu[[13 ;; 13]], uu[[16 ;5 16]]];
wWZ = Table[@, {Length[rl] + Length[r2] < Length[r3] }];
Do[wz[[x]] =uwul[x]] /nn[[1]], {x, Length[rl)}];
Do[wz[[x+ Length[rl]]] =uu[[x+Length[rl]]] /nn[[2]], {x, Length([r2]}];
Do[wz[[x+ Length[rl] « Length[r2]]] =

uu| [x +Length[rl] =« Length[r2]]] /nn[[3]], {%x, Length[r3]}];

mWZ [ [1i]] = SetAccuracy [Min[wz], 4];

Print ["wytezenie zastrzalow

mAZ [ [ii]]1];
Print[" "],

{ii, Length[msnei]}];
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Wl

]Di.l'l[[{“q}(3“, Ii_qxali:l rI‘]}I,H.IF-.I "—qy3", 1qu31lJ Ii_qzali}}J qmax];

W2 =
Join[{{"qx2", "-qx2", "qy2", "-qy2", "qz2", "-qz2"}}, Flatten[qmax2, {{1}, {2, 3}1]];

w = Table[@, {Length[msnei] + 1}, {12}];
Do[Do[w[[§11[[2i-1]] =w2[[J, 1]];

Wwl[F110[24]] =wd[[F, 1]], {1, 6}], {3, Length[msnei] +1}];

¥l =%x2 =vy1=vy2 =Table[0®, {Length[Pt]}];
Pola = lambda = Table[®, {Length[msnei]}];

(wn=7; )
Do

Do
Dol

vi[[i]] = mOmega2[[m, i, n]];
v2[[1]] = mOmega3[ [m, Length[Pt] =1-1, n]];

v =Join[yl, y2[[1;; Length[Pt] -1]]1;

¥x1[[1]] =PE[[1i]];
¥2[[1]] = Pt[[Length[Pt] +1-11];

w = Join[x1, =2[[1;: Length[Pt] -1111,
{i, 1, Length[Pt]}];

area = 8;
Do

If[i< 2« Length[Pt] -1,

(pointX1 = x[[1]1];
point¥l = y([[i]];
polntX2 = x[[1+1]];
pointY¥2 = w[[1+1]11),
(pointX1 = x[[1]1];
point¥l = y[[i]];
polntX2 = x[[1]];
point¥2 = y[[1]])

I

area += polntXl + point¥2 - pointX2 « point¥l;
, i1, 1, 2« Length[Pt] -1}1;
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Pola[ [m]] = Abs [area / 2]

, fm, 1, Length[msnei] }];

Do[lambda[[o] ] = Pola[[o]] 7 Max[Pola)
y 10, 1, Length[lambda] }];
parl = Join[{-Pt}, mOmegaZ[ [All, All, n]]];
par2 = Join[{Pt}, mOmega3 [ [AlLl, Al1l, m]]];
par = Table[®, {Length[msnei] +1}, {Length[Pt] «2}];
Do[Do[par[[J]) [[1]]) =parl[[], i]1];
par [[J1][[i+Length[Pt]]] =par2[[]j, 1]], {i, Length[Pt]}],
{3, Length[msnei] + 1}];
Sethirectory [NotebookDirectory([]1];

m

str = CreateFile [ToFileName [ {Directory[]}, ToString[n] <> ".x1sx"]1;
Export[str, {Transpose[Join[List /& Join[List /@ {ss}, msnei], par, 21],
Prepend [ {Pola, lambda}, msnei] } )

» In, 1, 31}]

I:*ii’*ii’i’i**i**i**i*ii**i*****ii*ii*ii*ii**i**i**i**i*]

Export[ToFileName [ {NotebookDirectory ]}, "wyniki_ III R6B.xlsx"],
{"statyka 1" - Prepend |
Transpose [ {msnei, mgqgll, mqll, mqg22, mq22, mgq33, mq33, mWC, mWZ, mGPS, mMian} ],

m

{"ss", "wybrany wezel x - II", "wybrany wezel x - III", "wybrany wezel y - II",

"wybrany wezel y - III", "wybrany wezel z - II", "wybrany wezel z - III",
"wyteienie ciegna”, "wyteienie zastrzaly", "GPS", "mianownik"}],

"statyka 2" - Join[List /@ Join[List /& {ss}, msnei], w, 2], "N(P+5)" = Transpose [
Join[List /& Join[List /@ {55}, msnei], Join[ {Range[1, 12]}, muu], 211, "N(P}" =
Transpose [ Join[List /@ Join[List /& {ss}, msnei], Join[{Range[1, 1e]}, m5wP], 217,

"czestotliwosci drgan wlasnych™ — Join[List /@ Join[List /@ {ss}, msnedi],

Join[ {Range[1, Length[mOmega® [ [1]]]] }, mOmegad], 2],

"czestotliwosci drgan wymuszonych" — Join[List /@ Join[List /@ {55}, msnei],
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Out{ 14

Out{155

out{156

Out{1s

B]=

Join[ {Range[1, Length [mOmega[[11]1]]}, mOmegal, 2111

mnoznik 3@

sily w pretach | 2.96582, 9.2687, 30,1331, 2.53371, 9.19563, 38,1182, 2.53315,
9,17268, 30.8932, 2.53274, 9.16559, 30,8872, 2.53315, 9.17268, 38.8932,
2,53371, 9.19563, 38.1182, 14,8838, 27.3106, 60,0482, 11,4758, 27.8348, 60,3939,
14.8616, 27.3485, 60.8756, 11.4534, 27.8293, 60.3988, 14.8344, 27.3323, 608.0607,
11.4651, 27.8318, 60,3917, 14,8284, 27.3258, 60.054, 11.4649, 27.8321, 6@.3923,
14,8344, 27.3323, 60.8607, 11.4651, 27.8318, 68.3917, 14.8616, 27.3485, 68.08756,
11.4534, 27.8293, 60,3908, 14,6483, 11.164, 26.2688, 52.3541, 14,6383, 11.1655,
26.2694, 52.3543, 14,6372, 11.1617, 26.2686, 52.3537, 14.6372, 11.1617, 26.2686,
£2.3537, 14.6383, 11.1655, 26,2694, 52,3543, 14.6483, 11.164, 26.2688, 52.3541

maksymalne przemieszczenie x @.372742, 1 &

minimalne przemieszczenie x 1.93766, 1 1

maksymalne przemieszczenie y @.331556, 1 8

minimalne przemieszczenie y -8.331533, i 36

maksymalne przemieszczenie z 3.92416, 1 23

minimalne przemieszczenie z -8.18949, i 1

mianownik GPS @.080818949

GPs 1.

wybrane przemieszczenia II rzedu
wybrane przemieszczenia III rzedu

maksymalna sila w ciegnach e8.4

@.654685 1.25695-18 ¥ 1.5186

B.638187 @.0888356822 1.47832

3

minimalna sila w zastrzalach -38.1

24

wytezenie ciegien 8.548

wytezenie zastrzalow @8.811
3@.1331, -3@.1182, -30.85932, - 30.8872, -30.8932, - 30.1182
9.2687, -9.19563, -9.17268, -9.1655%, - 9.17268, - 9.19563
2.96582, -2.53371, -2.53315, - 2.53274, - 2.53315, - 2.53371

8.8276846, @.8865425, @, 2813

55, ©.8236574, 9.8858602,

@.281141, 8.8148572, 8.@537987, @.1765, ©.0148548, 0.8537571, 8.176464,
8.0112936, &.a488947, @.134165, @.0112961, @.a48597, 0.134241 |
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