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Thesis Abstract 

The dissertation thesis concerns the dynamic stability analysis of tensegrity domes. The 

consideration includes the most known tensegrity domes, i.e., Geiger dome and Levy dome. 

These structures are distinguished from the traditional cable-strut steel domes by the presence 

of some unusual features. These domes are characterized by the presence of a self-equilibrated 

set of forces (the initial prestress), that stabilize the infinitesimal mechanisms. The analysis of 

tensegrity domes includes the influence of the initial prestress level on structure response. 

Considered domes with different structural modifications to compare their behaviour are 

presented. The modifications include different types of upper sections (open or closed upper 

sections) and additional circumferential cables (only in the case of the Geiger domes). Three 

types of analyses are performed, i.e., static, dynamic, and dynamic stability analysis. The 

influence of the initial prestress level on the static parameters (displacements, stiffness, and 

maximum effort), dynamic parameters (natural and free frequencies), and most importantly, the 

distribution and range of the unstable regions are considered.  

The analysis proved that the ability to control static and dynamic parameters with initial 

prestress is possible only in the case of the existence of an infinitesimal mechanism or 

mechanisms. Additionally, structures with a larger number of infinitesimal mechanisms are 

more sensitive to the change in the initial prestress level. In the case of the Geiger domes, 

structural modifications caused reducing a number of mechanisms, thus influence of the initial 

prestress level. For the Levy dome, the change of the upper section (from a closed one to an 

open one) resulted in the appearance of one local infinitesimal mechanism, however, the 

behaviour is similar to the structure without the mechanism.  

The analysis of the unstable regions showed, that the widest unstable regions appear at the 

minimum prestress level. Nonetheless, the increase in the initial prestress level results in the 

complete or partial narrowing of unstable regions. Additionally, the shape and range of the 

unstable region are also connected to the external load situation.   

The thesis concluded with answers to the questions asked at the beginning of the 

consideration and summarized with advantages and disadvantages of the considered structures. 

The summary includes the authors’ design guidelines for the future application of tensegrity 

domes in civil engineering.    
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Thesis Abstract (in Polish) 

Rozprawa doktorska dotyczy analizy stateczności dynamicznej kopuł tensegrity. 

Rozważania obejmują najbardziej znane kopuły tensegrity, tj. kopułę Geigera i kopułę 

Levy'ego. Konstrukcje te różnią się od tradycyjnych stalowych kopuł cięgnowych obecnością 

pewnych nietypowych cech. Kopuły te charakteryzują się obecnością samozrównoważonego 

układu sił wewnętrznych (wstępnego sprężenia), który stabilizuje nieskończenie małe 

mechanizmy. Analiza kopuł tensegrity obejmuje wpływ stanu samonaprężenia na odpowiedź 

konstrukcji. Przedstawiono różne, znane z literatury, modyfikacje strukturalne, w celu 

porównania wpływu tych modyfikacji na zachowanie kopuł. Analizowane są kopuły z 

środkowym pierścieniem (otwarta górna sekcja) lub bez (zamknięta górna sekcja). Dodatkowo, 

w przypadku kopuł Geigera, uwzględniono dodatkowe kable obwodowe łączące górne węzły. 

Przeprowadzono trzy rodzaje analiz, tj. analizę statyczną, analizę dynamiczną i analizę 

stateczności dynamicznej. Rozważono wpływ wstępnego sprężenia na parametry statyczne 

(przemieszczenia, sztywność i maksymalne wytężenie), parametry dynamiczne (częstotliwości 

drgań własnych i swobodnych), a przede wszystkim na rozkład obszarów niestateczności.  

Analiza wykazała, że możliwość kontroli parametrów statycznych i dynamicznych za 

pomocą wstępnego sprężenia jest możliwa tylko w przypadku istnienia mechanizmu 

infinitezymalnego (lub mechanizmów). Dodatkowo, konstrukcje z większą liczbą 

mechanizmów infinitezymalnych są bardziej wrażliwe na zmianę poziomu wstępnego 

sprężenia. W przypadku kopuł Geigera modyfikacje strukturalne spowodowały zmniejszenie 

liczby mechanizmów, a tym samym wpływ naprężenia wstępnego. W przypadku kopuł 

Levy'ego zmiana górnej sekcji (z zamkniętej na otwartą) spowodowała wystąpienie jednego, 

lokalnego mechanizmu infinitezymalnego, jednak zachowanie tej kopuły jest podobne do 

struktury bez mechanizmu. 

Analiza stateczności dynamicznej wykazała, że najszersze obszary niestateczne występują 

przy niskim poziomie wstępnego sprężenia. Niemniej jednak wzrost poziomu wstępnego 

sprężenia powoduje częściowe lub całkowite zwężenie obszarów niestateczności.  

Rozprawę zakończono odpowiedziami na postawione na początku rozważań pytania oraz 

podsumowano zalety i wady rozważanych konstrukcji. Dodatkowo, w podsumowanie zawarto 

sugerowane wytyczne projektowe, dotyczące przyszłego zastosowania kopuł tensegrity w 

inżynierii lądowej.
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Abbreviations and symbols (in order of appearing in the text) 

𝐶1
0   Initial configuration 

𝑡  Time  

𝐶1
𝑡   Actual configuration at the moment 𝑡  

∆𝑡  Time increment 

𝐶1
𝑡+∆𝑡   Actual configuration at the moment 𝑡 + ∆𝑡 

𝐴0  Initial cross-section 

𝑙0  Initial length 

𝐴  Cross-section 

𝑙  Length 

𝐪  Nodal coordinates vector 

𝐐  Nodal forces vector 

𝑞𝑖  Displacement 

𝑄𝑖  Nodal force 

𝐊𝑇  Tangential stiffness matrix 

𝐑  Residual force vector 

𝐅  Inertial forces vector 

𝐊𝐿  Linear stiffness matrix 

𝐒  Initial prestress vector 

𝐊𝐺  Geometry stiffness matrix that depends on the initial prestress vector 𝐒  

𝐍  Axial forces vector 

𝐊𝐺𝑁  Geometry stiffness matrix that depends on the axial forces vector 𝐍 

𝐊𝑁𝐿  Non-linear stiffness matrix 

𝐊𝑢𝑖  Displacement stiffness matrix 

𝑆  Initial prestress level 

𝐲𝑠  Self-stress state 

𝜎0  Initial stress 
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𝑁  Axial force 

𝐸  Young modulus 

∆𝑢𝑖  Displacement increment  

𝑁′  Actual axial force 

𝑛  Number of elements 

𝑚  Number of degrees of freedom 

𝐁  Extension matrix 

𝛔  Stress vector 

𝐃  Compatibility matrix 

𝐇  Diagonal matrix of eigenvalues of the compatibility matrix 𝐃  

𝐲𝑖  
Eigenvector of the compatibility matrix 𝐃 corresponded to zero eigenvalue of 

the matrix 𝐇, responsible for the self-stress state    

𝜇𝑖  Zero eigenvalue of the compatibility matrix 𝐃 

𝐋  Diagonal matrix of eigenvalues of the linear stiffness matrix 𝐊𝐿 

𝐱𝑖  
Eigenvector of the linear stiffness matrix 𝐊𝐿 corresponded to zero eigenvalue 

of the matrix 𝐋, responsible for the mechanism    

𝛾𝑖  Zero eigenvalue of the linear stiffness matrix 𝐊𝐿 

𝜎𝑖  
Eigenvalues of the linear stiffness matrix 𝐊𝐿 and the geometric stiffness matrix 

𝐊𝐺 

𝐳𝑖  
Eigenvector of the linear stiffness matrix 𝐊𝐿 and the geometric stiffness matrix 

𝐊𝐺  

𝐎  
Diagonal matrix of eigenvalues 𝜎𝑖 of the stiffness matrix consisted of linear 

matrix 𝐊𝐿 and geometric matrix 𝐊𝐺 

𝚪  Set of all elements of the structure  

𝒈𝑖  Set of elements of the structure with the same length 

𝑒𝑙  First element in the set of elements of the structure with the same length 

𝑒𝑧  Last element in the set of elements of the structure with the same length 

±𝑆𝑖  𝑖-th level of the initial prestress 

𝑆𝑚𝑎𝑥  Maximum level of initial prestress 
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𝐹  Fitness function 

𝐹1  Component of fitness function related to the stiffness matrix 

𝐹2  Component of fitness function related to the equilibrium of nodes  

𝐸𝑁  Equilibrium of nodes 

𝑆𝑖𝑥  Force projection on 𝑥 axis 

𝑆𝑖𝑦  Force projection on 𝑦 axis 

𝑆𝑖𝑧  Force projection on 𝑧 axis 

𝑆𝑚𝑖𝑛  Minimum level of initial prestress 

𝑁𝑅𝑑  Load-bearing capacity 

W𝑚𝑎𝑥  Maximum effort of elements 

𝐺𝑆𝑃  Global Stiffness Parameter 

𝐊𝑆  Secant stiffness matrix 

�̃�  Amplitude vector 

𝑓  Frequency 

𝐌  Mass matrix 

𝑃  Constant part of the periodic load 

𝑃𝑡  Amplitude of the periodic load  

𝜃  Load frequency 

𝛺  Natural frequency of the structure loaded with a constant part of the load 

�̈�  Acceleration vector 

𝜐  Pulsatility index 

𝜂  Resonant frequency of the external load vibrations 

𝛼  The angle of inclination of cables of the load-bearing girder 

𝛽  The angle between perimeter cables 

𝑛𝑔  Number of load-bearing girders 

𝑛𝑠  Number of struts 

𝑛𝑚  Number of infinitesimal mechanisms 

 𝑊𝑚𝑎𝑥,𝐶   Maximum effort of cables 
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 𝑊𝑚𝑎𝑥,𝑆   Maximum effort of struts 

𝑃𝑧  Vertical load applied according to 𝑧 axis   

𝑃𝑥𝑦  Plane load applied on plane of 𝑥 and 𝑦 axes 

𝜌  Steel density  

𝑓𝑡𝑜𝑡𝑎𝑙  Total number of frequencies dependent on the initial prestress 

𝑓𝑛𝑚  Number of frequencies that correspond with the mechanism 

𝑓𝑎𝑑𝑑   Number of additional frequencies dependent on the initial prestress 

𝐴𝜂  The area of the unstable region 

𝜆  
Non-dimensional parameter that measures changes in areas of unstable regions 

depending on the initial prestress level 
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1. Introduction 

1.1. Subject of consideration 

Tensegrity domes are composed of compressed (struts) and tensed (cables) elements. The 

struts never touch and are surrounded by a continuous network of cables. There are some 

characteristic features that distinguishes them from the traditional rod-like structures. The 

immanent features are self-stress state and infinitesimal mechanism. The self-stress state can 

be defined as a system of self-equilibrated forces that satisfy the homogeneous equation of 

equilibrium (the initial prestress). The absence of these forces makes the tensegrity structure 

unstable, i.e., geometrically variable. The initial prestress must be introduced to the structure to 

stiffen the existing infinitesimal mechanism and ensure stabilization. The self-stress state 

depends only on the geometry of the structure, and is independent of external loads. The 

infinitesimal mechanisms, unlike finite mechanisms, describe the local geometric variability to 

the infinitesimal displacements. Changing the initial prestress allows controlling the behaviour 

of the tensegrity system under various loads and influences the stiffness of the structure. 

The idea of tensegrity was mainly associated with art, and to a lesser extent with 

architecture, and consequently, with construction. In recent years, the interest of architects and 

engineers in the practical application of these solutions has increased: “Tensegrity: from Art to 

Structural Engineering” [1]. This is confirmed by numerous scientific works on the design of 

tensegrity systems, opening new perspectives for construction and application. 

Currently, many research teams worldwide are working on tensegrity structures. It is 

impossible to list all the scientists, but the leaders include René Motro (France), Robert E. 

Skelton (USA), Hidenori Murakami (USA), Bin-Bing Wang (Singapore), and Y. Kono (Japan). 

Important monographs on tensegrity include: “An Introduction to Tensegrity” [2], “Tensegrity: 

Structural Systems for the Future” [3], “Tensegrity Systems” [4], “Art and Ideas” [5], and 

“Tensegrity Structures: Form, Stability, and Symmetry” [6]. 

In Poland, relatively few researchers are involved in tensegrity structures. Wacław 

Zalewski, considered a pioneer, designed the roof of Supersam in Warsaw in 1962 and the roof 

of the sports hall in Katowice in 1971. The first use of tensegrity as a bridge structure was the 

KL-03 footbridge over the S-7 Salomea – Wolnica route in Magdalenka, designed by Bogusław 

Markocki [7, 8]. The only monograph published in Polish on tensegrity structures is Zbigniew 

Bieniek's work [9] “Tensegrity – Integrating Tension in Architectural Systems.” This 

monograph is contributory in nature. Bieniek presented geometrically diverse systems and 
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structures for use in construction technology. He also supplemented the current classification 

of tensegrity systems by adding a new class, θ (theta), which includes systems with a disjoint 

network of tendons. Bieniek's research is primarily architectural and focuses on the search and 

presentation of morphological methods for shaping these structures [10-17]. In turn, Wojciech 

Gilewski deals with tensegrity from a mechanical perspective [18-29]. Under his supervision, 

three doctoral theses have been completed on the use of tensegrity structures in bridge 

construction [30], the possibility of using tensegrity as an intelligent structure [31], and the 

potential use of tensegrity structures in building construction [32]. In the cooperation with Al 

Sabouni-Zawadzka the research on orthotropic tensegrity models [33-36] and metamaterials 

[37, 38] was conducted. From the experimental point of view, works regarding the effect of 

prestressing [39], tensegrity towers [40], and the dynamic response of tensegrity structures [41] 

were presented by Małyszko and Rutkiewicz. 

Attempts to apply tensegrity structures in construction date back to the origins of the idea 

itself. Among the first constructions were geodesic domes, patented by Fuller in 1954 [42]. 

These domes are characterized by high load-bearing capacity with minimal use of construction 

materials. Unfortunately, they require complex analyses due to large deformations, 

susceptibility to dynamic loads, and the necessity to analyze individual assembly phases. 

Additionally, the process of prestressing the structure is challenging [43, 44]. 

In recent years, there has been an increase in interest in the application of tensegrity 

structures in construction. It applies to both standard and non-standard applications. This 

increase is due to the enhanced design and execution capabilities, which are related to the 

development of advanced computational techniques and the advancement of construction 

technologies and materials. 

Standard applications refer to the use of the tensegrity concept for building domes, plates, 

towers, masts, bridges, and footbridges. Non-standard applications involve intelligent 

construction and the use of the tensegrity concept in creating innovative materials, so-called 

metamaterials. 

The research topic addressed is dictated by the need to supplement the existing literature, 

in which the problem of parametric resonance of tensegrity structures has not been highlighted 

so far. From an engineering point of view, the technical significance of instability areas is 

particularly large because if the load parameters fall within the designated area, oscillations 

with increasing amplitude occur. These oscillations are dangerous in terms of the durability of 

the structure. There is extensive literature on parametric vibrations that essentially resolves all 

the basic issues. Nonetheless, tensegrity structures are a special example of constructions. They 



1. Introduction 

 13 

 

are characterized by an additional parameter, the state of self-stress, which affects the shape 

and extent of these areas. In this work, surface tensegrity structures, such as double-layer grids 

and domes, whose application in construction is increasingly common, will be analyzed. 

1.2. Purpose, scope and assumptions of the work 

The research problem involves the analysis of the behavior of tensegrity domes subjected 

to a periodic load. Particularly, the influence of the initial prestress level on the structure’s static 

and dynamic parameters is considered.  

The research hypothesis is formulated as follows: 

1. Control of static and dynamic parameters is only possible for tensegrity domes that 

exhibit an infinitesimal mechanism. 

2. Structural modifications can both improve and impair domes’ response to the 

external load.  

3. The initial prestress level affects the distribution of dynamic unstable regions in 

tensegrity domes subjected to periodic loads. 

The research purpose and scope are to investigate the behavior of tensegrity domes under 

the influence of loads (time-independent and periodic). To achieve this aim, the following 

questions must be answered: 

i. How does initial prestress impact the static parameters of the domes with and 

without infinitesimal mechanisms? 

ii. What is the relation between the initial prestress level and vibration frequencies 

that correspond to the infinitesimal mechanisms?  

iii. What is the relation between the initial prestress level and vibration frequencies 

that do not correspond to the infinitesimal mechanisms? 

iv. How does the initial prestress level influence the distribution and range of unstable 

regions? 

v. How does the position and value of the external load influence the static and 

dynamic responses of the dome? 

vi. How does structural modification influence the static and dynamic responses of the 

dome?  

vii. What are the design guidelines for the application of tensegrity domes? 
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The following assumptions were adopted for the research: 

− the structure material (steel) is continuous, uniform, and isotropic, 

− constitutive equations are linear, 

− structure consists of only stressed elements (cables) and only compressed elements 

(struts), 

− all elements are straight and of comparable length, 

− the structures are initially prestressed, by means no cable is loose (the sag effect on the 

effective elasticity modulus is neglected), 

− the minimum prestress level ensures only tension forces in the cables in each 

computational situation, 

− tensed elements create a continuous net, whereas, compressed elements never touch, 

thus are not subjected to large buckling loads, 

− nodes are ideal ball joints, 

− supporting bonds are fixed, and scleronomic, 

− loads are conservative, 

− large displacement gradients are possible, 

− the elements assumed to be weightless in the static considerations, 

− the impact of dumping was omitted in the dynamic considerations. 

Theoretical studies and numerical simulations are conducted. Since tensegrity structures 

without considering the initial prestress level are geometrically variable, their analysis using 

commercial software is more complicated. Additionally, the inclusion of initial prestress is only 

feasible by introducing the appropriate axial load to all elements. The numerical analysis in this 

work utilizes a computational procedure encompassing the analysis of geometrically nonlinear 

rode systems. This procedure is based on the finite element method and allows for a 

comprehensive analysis at any initial prestress level defined in the pre-stressed tensegrity 

element. 

The computational module is written in the Mathematica environment, which simplifies 

operations through the use of its built-in functions and commands. The solution of the algebraic 

nonlinear system of equations executed using the Newton-Raphson method is implemented in 

the mentioned environment. The program allows for the flexible definition of the construction 

geometry, material parameters, initial stresses, and loads and will enable tracking the behavior 

of selected static, geometric, and dynamic parameters. 
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1.3. Dissertation draft 

The work consists of seven main chapters, whereas the first chapter contains the 

introduction to the subject of consideration (Chapter 1). 

Chapter 2 presents the general concept of tensegrity structures. This part focuses on the 

history and evolution of tensegrity, covering the development from the idea to its application, 

including the first originators and their successors. The chapter includes a thorough literature 

review of existing research on tensegrity structures and also discusses the current state of 

knowledge in the field of dynamic stability analysis of tensegrity. To present the research 

subject in detail about tensegrity domes, the chapter delves into the origin, history, analysis, 

and application of cable-strut tensegrity domes. 

Chapter 3 focuses on the geometrically nonlinear mathematical model applied to the 

analysis of tensegrity systems. It presents the equilibrium equations for a single finite element 

and for the complex structure. The presented description is further applied to the qualitative and 

quantitative analyses of the tensegrity domes. 

The main subject of Chapter 4 is the qualitative and quantitative analysis of the tensegrity 

structures. The qualitative analysis focuses on the identification of self-stress states (initial 

prestress) and infinitesimal mechanisms. Two methods of the analysis are described, i.e., 

spectral analysis of truss matrices and genetic algorithm. In turn, the quantitative analysis is 

divided into static, dynamic, and dynamic stability analyses. This assessment concerns the 

influence of the initial prestress level on the static parameters (displacements, stiffness, and 

maximum effort of the structure) and dynamic parameters (natural and free frequencies), and 

on the distribution of the unstable regions.  

Chapter 5 is focused on the first type of the analyzed tensegrity domes, i.e., the Geiger 

dome. The history of the first appearance, patented geometry, and up-to-date research are 

provided. The several variants of considered domes are presented, i.e., small-scale domes, real-

scale domes, and examples from the literature. Qualitative and quantitative analyses are 

performed.  

Chapter 6 describes the second type of analyzed tensegrity domes, i.e., the Levy dome. 

The introduction covers the first inventor, design solutions, and literature review. Next, the 

geometry of the analyzed structures, i.e., small-scale domes, real-scale domes, and examples 

from the literature is provided. The qualitative and quantitative analyses are performed.  

The thesis is finished with Chapter 7 which highlights the main conclusions and 

achievements of the work. In particularly, answers the questions from Chapter 1.2. 
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A list of figures, tables, and references are provided at the end of the work, along with the 

calculation program developed in the Mathematica and Python environments.       
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2. Concept and application of tensegrity structures 

2.1. Introduction 

Tensegrity systems are novel solutions in the field of civil engineering. Initially considered 

only as works of art, they later gained popularity among scientists worldwide. These structures 

are characterized by their characteristic features, i.e., self-stress state and infinitesimal 

mechanism, which are important in the context of the potential use of tensegrity systems as 

adaptive and deployable “smart structures”. Due to their unique properties, tensegrity systems 

can be implemented in various areas of science. 

Furthermore, tensegrity structures offer several advantages over traditional engineering 

solutions. Their lightweight nature makes them ideal for applications where weight is a critical 

factor, such as in aerospace engineering and portable architectural structures. The inherent 

flexibility and adaptability of tensegrity systems also make them suitable for dynamic 

environments where traditional static structures might fail. In addition to their practical 

applications, tensegrity systems also hold aesthetic value due to their visually striking and 

intricate designs. This blend of form and function has led to their use in innovative architectural 

projects, where structural integrity and artistic appeal are equally prioritized. Architects and 

engineers are increasingly exploring tensegrity principles to create sustainable and energy-

efficient buildings, leveraging the minimal material usage and optimal load distribution 

inherent to these structures.  

In conclusion, tensegrity systems represent a significant advancement in structural 

engineering, offering a unique combination of strength, flexibility, and efficiency. Their 

potential for adaptation, deployability, and aesthetic integration makes them a promising area 

of study and application, poised to address some of the most pressing challenges in modern 

engineering and beyond. 

2.2. Historical review 

The first tensegrity structure is considered to be a sculpture made by Kenneth Snelson in 

1948. It presented the original concept of “self-stressed structures composed of rigid struts and 

cables, with compressive and tensile forces that form an integrated whole” [45]. Initially, the 

idea was associated mainly with art and to a small extent with architecture and construction. 

Hugh Kenner was the first person who brought tensegrity from the world of art to the technical 

sciences. In his book [46], he initiated the systematic study of tensegrity systems, performed 
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static analysis, and developed a prestressed configuration of the expanded octahedron. At the 

same time, Anthony Pugh elaborated on the practical principles of building simple tensegrity 

systems in his book [2]. The main advantage of these works was raising awareness of tensegrity 

structures and laying the foundation for further research. 

In 1978, the British engineer Christopher Calladine noticed that the existence of an 

infinitesimal mechanism in a frame that fulfills Maxwell’s rule [47] implies an appropriate self-

stress state. In the absence of a self-stress state, the stiffness of the mechanism is zero. 

Infinitesimal mechanisms in tensegrity structures are stiffened by introducing the self-stress 

state [48, 49]. New research initiated by Calladine was continued by Pellegrino [50, 51] and 

Hanaor [52, 53]. Pellegrino and Calladine developed new methods for segregating rigid struts, 

identifying mechanisms, and detecting when the self-stress state is beneficial [54]. They refined 

the method of segregation of first-order mechanisms and high-order mechanisms. The study of 

infinitesimal mechanisms, self-stress states, geometry, and stability of tensegrity was continued 

by Murakami et al. [55-57]. 

A key issue in the study of tensegrity structures is their susceptibility to the initial prestress. 

The problem of finding the appropriate initial prestress has been investigated by many 

researchers. Existing methods for determining the appropriate initial prestress can be divided 

into exact and approximate (including numerical methods). The first numerical solution was 

proposed by Murakami and Nishimura [58-60] for dodecahedral and icosahedral modules of 

tensegrity structures. Numerical methods were also applied by Motro and Pellegrino, though 

they were effective only for some computational problems. Over time, the development of other 

methods began to emerge, known as “form-finding methods” [61-66]. These methods involve 

determining the configuration of the elements that result in a stable self-stress state in the 

system. The most frequently used methods are analytical solutions [19], nonlinear programming 

[50], dynamic relaxation [67], force density method [68], and many others. A comprehensive 

overview of the form-finding methods was provided in [64, 69, 70]. The search for new forms 

of tensegrity structures is defined as a qualitative analysis and is a main step in the analysis of 

tensegrity structures.    

The influence of the self-stress state, and more specifically, the influence of the initial 

prestress level, on the behaviour of the structure is considered the next step in the analysis of 

tensegrity structures (quantitative analysis). The static response of tensegrity structures to 

external loads has been studied by many scientists [53, 55, 56, 58, 59, 71-78]. Due to the 

flexibility of the systems, the research required a nonlinear approach. Nonlinear analysis 

revealed emergent properties and strong anisotropy in tensegrity systems. Among other 
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findings, procedures for optimizing of stiffness-to-mass ratio for symmetric and asymmetric 

structures were developed [79-83]. Most of the research is concentrated on theoretical studies 

[69, 73, 84] and small-scale models are rarely used for actual tests [53, 74, 85, 86]. The dynamic 

response of the tensegrity systems, on the other hand, is still under study. The literature review 

distinguished the following areas of research: 

− methods directed at designing and searching for stable construction forms, 

− algorithms that change the shape of the structure: optimization algorithms used to 

generate new topologies; the new topology aims to achieve the desired performance 

criteria, such as the level of stiffness, 

− methods of controlling the shape of the structure: examining how the structure 

changes its shape under the influence of external forces, 

− parametric analysis that considers the influence of the initial prestress level on the 

dynamic behaviour of the structure.  

Significant progress in the dynamic research of tensegrity structures was made in the 

1990s. The use of controlled structures was considered, particularly in the area of ensuring 

reliability, failure resistance, and control over the model. The first paper on controlling 

tensegrity structures was presented by Skelton and Sultan [87]. Soon after, other researchers 

continued the investigation of active control of tensegrity structures [88-95]. The purpose of 

research on active control was to reduce vibration in the system and increase efficiency. The 

influence of the initial prestress level of the tensegrity modules [58, 96, 97], six-strut spherical 

modules [98], tensegrity grids [99], and clustered systems [100] has been investigated.   

Currently, interest in tensegrity structures has increased in the fields of applied sciences 

and engineering. These structures are often called “structures of the future” [3] and are seen as 

potential solutions to various problems. In recent years, architects and engineers have been 

looking for practical applications of tensegrity systems [1]. Tensegrity systems have found wide 

application in aviation and aerospace engineering due to their relatively low weight and high 

resistance to vibrations. The use of tensegrity has been considered in components of satellites 

[101], spacecraft [102, 103], telescopes [104], antennas [95], robots, and damping systems. In 

civil engineering, the application of tensegrity was initially limited to architectural elements [9, 

43, 105, 106]. Gradually, they were implemented in the dome structures [29, 107-111] and the 

construction industry [27, 32]. Notably, tensegrity structures have been implemented in bridges 

[30, 31, 112-114] and coverings [115].  
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Tensegrity structures are also used in biology and biomechanics, mostly to determine the 

behaviour and functioning of cells [116], and to design robots and artificial intelligence systems 

[80, 81, 92, 117]. Additionally, the tensegrity system has been used in the design of new 

materials, known as metamaterials [17, 37, 38, 118-121]. 

2.3. Tensegrity domes 

The prestressed cable-strut domes are an example of tensegrity structures. These structures 

can have some tensegrity features, but their genesis is not directly related to tensegrity. The first 

application of such a solution was the roof of the auditorium in Utica, in the United States, 

completed in 1959. The supporting structure of the roof, with a span of 76.2 m, consisted of 

radially placed flat girders composed of pairs of tensioned tendons supported by vertical, 

compressed struts. The girders were connected in internal rings with a diameter of 7 m. The 

tendons are anchored around the circumference in a rigid reinforced concrete ring. Prestressing 

ensured that the struts remained compressed and the tendons stretched. The lower tendons were 

of major importance in terms of the load-bearing capacity of the structure, and the upper ones 

allowed for the introduction of prestressing forces [122]. 

The first tensegrity cable-strut dome is considered to be the Geiger dome, patented in 1988 

[115]. Geiger combined Fuller's tensegrity principle with the principle of creating compressed 

cable networks, and thus presented a new non-triangular spatial system of elements. The new 

patented system was called “Cabledome”. The main principle behind Geiger’s dome is that all 

tension is achieved through the roof structure by means of tensed cables and discontinuous 

compressed struts. The original structure consisted of radial trusses, with tensed and 

compressed elements. One of the main advantages of such a structure is that its weight per 

square meter does not change as the span increases, and can be successfully used in long-span 

roofs. Unlike high-profile Fuller domes, the Geiger domes have a low-profile configuration that 

reduces wind lift, and uneven snow settling, and uses less roofing material. After its appearance, 

the Geiger dome was the subject of many theoretical and experimental studies [29, 123-126]. 

The further configurations were presented by Terry [111], Hanaor [53, 73, 108], and others. As 

well as new design solutions, the analysis of tensegrity domes was the major area of interest. 

The geometrically nonlinear analysis of tensegrity systems [71], the prestress problem [104, 

127], the equilibrium conditions [128, 129], and other aspects were studied.  

An example of the implementation of the Geiger dome is the roof of the 1986 Olympic 

Hall in Seoul (KSPO Dome). The roof supporting structure of 120 m span consisted of radially 

arranged flat girders, as in the case of the auditorium in Utica in the United States. However, in 
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this solution, instead of the lower rope, the struts are based on the diagonal and lower 

circumferential cables (Fig. 2.1) [109, 130-132]. The load was transferred from the central 

tension ring, through a series of radial ridge cables and the tension hoops, to the peripheral 

clamping ring. 

  

 

Fig. 2.1. Olympic Hall roof in Seoul during the construction [132]  

 Another example of a tensegrity dome is the roof of the Sports Hall in Katowice (Spodek 

by Wacław Zalewski). The structure is a modified Geiger dome (Fig. 2.2). Unlike the typical 

solution, in this case, the roof structure with a span of 126 m uses a system of elements with 

lower and upper radial cables. The roof consists of 120 strut-cable girders, and a dome is 

supported on the inner ring, illuminating the interior of the hall [32, 133-135]. 

a) b) 

  

Fig. 2.2. Spodek Hall in Katowice during the construction: a) upper section [136], b) side view [137] 

It is also worth mentioning the first tensegrity structure by W. Zaleski Supersam roof in 

Warsaw (Fig. 2.3). In contrast to structures in a radial system, the supporting structure was 

composed of several parallel girders. The girders were composed of steel struts and top and 

bottom chords. The vertical load of the cover was taken up by the lower tensed chords.  
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Fig. 2.3. Roof of Supersam in Warsaw [138]  

A slightly different solution for the cable dome, compared to Geiger, was developed by 

Matthys Levy. Levy's dome consisted of a network of tendons connected at nodes, equally 

spaced along the meridians. Levy's idea was used to build a stadium cover in Atlanta (Georgia 

Dome) in the United States in 1992 [110, 139-142]. This is an example of the largest existing 

dome in the world - the dome was built on an ellipse plan with dimensions of 227x185 m, with 

an area of 37,200 m2 (Fig. 2.4). To improve the mechanical behavior of the cable dome, the 

additional hoop cables and changing the arrangement of the struts on the diagonal struts were 

used.  

  

 

Fig. 2.4. Structure of Georgia Dome roof [139] 

An interesting example of cable covering is the White Rhino membrane roof supporting 

structure in Chiba (Japan), built in 2001 (Fig. 2.5). The name of the structure refers to the 

external appearance of the roof, which resembles a rhinoceros. The structure is based on two 

modified three-strut trapezoidal modules of different dimensions, with an added central vertical 

strut. The height of the larger module is 9 m, and the length of the base side is 12 m. The 

dimensions of the smaller module are 6 m and 9 m, respectively. The modification of the 
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modules involves the addition of seven additional elements, i.e., six tendons and one strut. 

Three additional cables extend between the six unconnected vertices of the module. In turn, the 

added strut is connected to the module using three further cables and constitutes a form of roof 

support. Additional elements do not change shape but affect the nature of the structure and 

improve its stiffness. The modification leads to the disappearance of the infinitesimal 

mechanism. These elements limit the large deformation of the membrane and transfer the load 

from the roof membrane to the rigid truss frame [143-145]. 

A lot of different structures that consist of tensed cables and compressed struts can have 

tensegrity features. The detailed analysis was provided in [32].  

  

 

Fig. 2.5. White Rhino structure [143]   
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3. Geometrically nonlinear mathematical model 

3.1. Introduction 

The qualitative analysis of classical lattice structures can be carried out assuming small 

displacements, i.e., a linear geometric model, or second-order theory, i.e., a quasi-linear model. 

However, in the case of tensegrity systems, both these approaches are inadequate. The 

important feature of the tensegrity structure, which is related to the stiffening of the structure 

under the influence of an external load, is not considered in either approach. If an external load 

causes the displacement in accordance with the form of the infinitesimal mechanism, additional 

prestress of the structure occurs - tensile forces generate additional tensile forces in the cables 

and compressive forces in the struts. In such circumstances, the initial response cannot be used 

to determine the behavior of the structure. Therefore, the analysis should be carried out 

assuming the hypothesis of large displacements (third-order theory).  

Tensegrity systems are spatial lattice systems in an initial prestress. The structure consists 

of tensed cables and compressed struts, and cables do not have compression rigidity. The 

elements are rectilinear with comparable length. The main tensegrity feature is stabilizing the 

existing infinitesimal mechanisms by means of the initial prestress. The second one is the size 

of the displacements, which can be large even if the deformations are small. Taking into account 

the above-mentioned tensegrity features, a geometrically non-linear model was adopted to 

describe the behaviour of the structure. The model is characterized by large gradients of 

displacements and small strain gradients. Due to the presence of the initial prestress in 

tensegrity structures, the additional condition of the initial stresses [146] was considered [71, 

147-150] As a basis for formulating the tensegrity lattice equations, the partially non-linear 

theory of elasticity in Total Lagrangian – TL (Lagrange’s stationary description) approach was 

adopted.     

3.2. Model of tensegrity element  

Tensegrity systems can be classified as truss structures. However, due to an existing self-

stress state, the truss element is modified taking into account the initial stress 𝜎0.  

The space finite tensegrity element in an undeformed configuration (initial) 𝐶1
0  and 

deformed configurations (actual) 𝐶1
𝑡  and 𝐶1

𝑡+∆𝑡  (Fig. 3.1) is considered. In the initial 

configuration, the cross-sectional area and the length are relatively 𝐴0 and 𝑙0, whereas in the 

actual configuration, they are 𝐴 and 𝑙 [148, 151]. 
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Fig. 3.1. Space finite tensegrity element [151]  

The static equilibrium equation in the incremental version is formulated in the actual 

configuration at the moment 𝑡 + ∆𝑡( 𝐶1
𝑡+∆𝑡 ). The tensegrity element is described by the vector 

of nodal coordinates and corresponding vector of nodal forces: 

𝐪𝑒
𝒂

𝑡+∆𝑡 = 𝐪𝑒 + ∆𝐪𝑒
𝒂
𝑡 ,     𝐐𝑒

𝒂
𝑡+∆𝑡 = 𝐐𝑒 + ∆𝐐𝑒

𝒂
𝑡    (3.1) 

where 𝐪𝑒 = [𝑞1
1 𝑞2

1 𝑞3
1    𝑞1

2 𝑞2
2 𝑞3

2]𝑇𝑎
𝑡  and 𝐐𝑒 = [𝑄1

1 𝑄2
1 𝑄3

1    𝑄1
2 𝑄2

2 𝑄3
2]𝑇𝑎

𝑡  are 

relatively a vector of nodal coordinates and the vector of nodal forces in the actual configuration 

at the moment 𝑡( 𝐶1
𝑡 ), whereas ∆𝐪𝑒 = [∆𝑞1

1 ∆𝑞2
1 ∆𝑞3

1    ∆𝑞1
2 ∆𝑞2

2 ∆𝑞3
2]𝑇 is a vector of 

displacement increments and ∆𝐐𝑒 = [∆𝑄1
1 ∆𝑄2

1 ∆𝑄3
1    ∆𝑄1

2 ∆𝑄2
2 ∆𝑄3

2]𝑇 is a vector of 

nodal forces increments.  

The variation formulation of the virtual work principle, between two infinitely close times 

𝑡 and 𝑡 + ∆𝑡, leads to the incremental static equilibrium equation:   

𝐊𝑇
𝑒 (𝐪𝑒)∆𝐪𝑒 = 𝐑𝑒 + ∆𝐐𝑒;     𝐑𝑒 = 𝐐𝑒 − 𝐅𝑒

𝒂
𝑡  (3.2) 

where 𝐊𝑇
𝑒 (𝐪𝑒) is a tangential stiffness matrix, 𝐑𝑒 is a residual force vector, and 𝐅𝑒 is an inertial 

forces vector.  

The tangential stiffness matrix: 

𝐊𝑇
𝑒 (𝐪𝑒) = 𝐊𝐿

𝑒 + 𝐊𝐺
𝑒 + 𝐊𝑁𝐿

𝑒 (𝐪𝑒);    𝐊𝑁𝐿
𝑒 (𝐪𝑒) = (𝐊𝑢1

𝑒 + 𝐊𝑢2
𝑒 ) (3.3) 

consists of the linear 𝐊𝐿
𝑒, quasi-linear 𝐊𝐺

𝑒 , and non-linear 𝐊𝑁𝐿
𝑒 (𝐪𝑒) parts. The quasi-linear part, 

called the geometry stiffness matrix, consists of two components  𝐊𝐺
𝑒 = 𝐊𝐺

𝑒 (𝐴0𝜎0) + 𝐊𝐺𝑁
𝑒 (𝑁), 

where 𝐊𝐺
𝑒 (𝐴0𝜎0) depends on 𝑆 = 𝐴0𝜎0, which results from the initial stress 𝜎0, and 𝐊𝐺𝑁

𝑒 (𝑁) 

depends on the axial force 𝑁, which results from external loads. All parts of the stiffness matrix 

(3.3) can be expressed as follows:    
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𝐊𝐿
𝑒 =

𝐸𝐴0

𝑙0
[

𝐈0 −𝐈0
−𝐈0 𝐈0

] ,  𝐊𝐺
𝑒 (𝐴0𝜎0) =

𝑆

𝑙0
[

𝐈 −𝐈
−𝐈 𝐈

],  

𝐊𝐺𝑁
𝑒 (𝑁) =

𝑁

𝑙0
[

𝐈 −𝐈
−𝐈 𝐈

] , 𝐊𝑢1
𝑒 =

𝐸𝐴0

𝑙0
2 [

𝐈1 −𝐈1
−𝐈1 𝐈1

] , 𝐊𝑢2
𝑒 =

𝐸𝐴0

𝑙0
3 [

𝐈2 −𝐈2
−𝐈2 𝐈2

] 

(3.4) 

where: 

𝐈 = [
1 0 0
0 1 0
0 0 1

],  𝐈0 = [
1 0 0
0 0 0
0 0 0

],  𝐈1 = [

2∆𝑢1 ∆𝑢2 ∆𝑢3

∆𝑢2 0 0
∆𝑢3 0 0

], 

𝐈2 = [

(∆𝑢1)
2 ∆𝑢1∆𝑢2 ∆𝑢1∆𝑢3

∆𝑢1∆𝑢2 (∆𝑢2)
2 ∆𝑢2∆𝑢3

∆𝑢1∆𝑢3 ∆𝑢2∆𝑢3 (∆𝑢3)
2

] 

(3.5) 

where: ∆𝑢𝑖= 𝑞𝑖
2 − 𝑞𝑖

1 for 𝑖 = 1,2,3.  

The residual force vector 𝐑𝑒 depends on the inertial force vector: 

𝐅𝑒 = (𝑆 + 𝑁) [
−𝐈𝐹1

𝐈𝐹1
] ;  𝐈𝐹1 =

[
 
 
 
 1 +

∆𝑢1

𝑙0
∆𝑢2

𝑙0
∆𝑢3

𝑙0 ]
 
 
 
 

 (3.6) 

Due to the fact that the initial configuration is not deformed, the axial force 𝑁 is not a real 

force. It is the component of the second symmetrical Pioli–Kirchhoff stress tensor, whereas the 

real force is defined on the basis of the Cauchy tensor and it is: 

𝑁′ = 𝑁
𝑙

𝑙0
 (3.7) 

3.3. Model of tensegrity structure  

Tensegrity structure considered as 𝑛 -element space truss (𝑒 = 1,2, … , 𝑛), with 𝑚 degrees 

of freedom  𝐪(∈ ℝ𝑚x1): 

  𝐪 = [𝑞1 𝑞2    … 𝑞𝑚]𝑇  (3.8) 

The incremental static equilibrium equation for the structure takes the form: 

  𝐊𝑇(𝐪)∆𝐪 = ∆𝐏 + 𝐑  (3.9) 

where 𝐏(∈ ℝ𝑚x1) is an external load vector, and 𝐊𝑇(𝐪)(∈ ℝ𝑚x𝑚) is a tangent stiffness matrix 

of a structure: 
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  𝐊𝑇(𝐪) = 𝐊𝐿 + 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) + 𝐊𝑁𝐿(𝐪);  𝐊𝑁𝐿(𝐪) = 𝐊𝑢1 + 𝐊𝑢2  (3.10) 

where 𝐊𝐺(𝐒) is a geometry stiffness matrix that depends on self-equilibrated internal forces 𝐒: 

   𝐒 = 𝐲𝑠𝑆 (3.11) 

where 𝑆 is the initial prestress level and 𝐲𝑆(∈ ℝ𝑛×1) is an eigenvector related to the zero 

eigenvalue of the compatibility matrix (see section 4.2.1). Additionally, the tangent stiffness 

matrix 𝐊𝑇(𝐪)(∈ ℝ𝑚x𝑚) consists of the geometry stiffness matrix 𝐊𝐺𝑁(𝐍) that depends on the 

axial forces 𝐍 and the non-linear displacement stiffness matrix 𝐊𝑁𝐿(𝐪). 

The residual force vector 𝐑(∈ ℝ𝑚x1) in (3.9) results from the aggregation. In equilibrium, 

it is equal to zero (𝐑 = 𝟎), whereas in a process of iteration, a norm ‖𝐑‖ is the “distance” from 

the equilibrium state. The iterative process converges if ‖𝐑‖ → 0.
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4. Analysis of tensegrity structures 

4.1. Introduction 

The complete analysis of tensegrity structures is a two-step process. The first step, 

qualitative analysis, concerns the identification of the immanent features of the structure, i.e., 

self-stress states and infinitesimal mechanisms. A thorough qualitative analysis allows for 

proper classification, and, as a result, a better understanding of the behaviour of the structure. 

According to [22, 148], the following characteristics can be distinguished in the tensegrity 

structures: 

− it is a truss (T), 

− there is a self-stress state, that stabilizes the structure (SS), 

− there is an infinitesimal mechanism, stiffened by the self-stress state (M), 

− the struts extremities are not touching each other, nonetheless, cables create a 

continuous net (D), 

− compressed struts are surrounded by tensed cables (I), 

− tensed cables have no rigidity for compression (C).  

The presence of characteristics listed above classified tensegrity structure as:  

− ideal tensegrity (T, SS, M, D, I, C),  

− “pure” tensegrity (T, SS, M, I, C),  

− structures with tensegrity features of class 1 (T, C, SS, M),  

− structures with tensegrity features of class 2 (T, SS, C, I or D).  

From an engineering perspective, it is very important that the structures have all six 

features. Nonetheless, all tensegrity structures possess benefits related to the ability to control 

various parameters, except the structures with tensegrity features of class 2. The second step in 

the analysis of tensegrity structures is a quantitative approach. The analysis concerns the impact 

of the initial prestress on the behaviour of the structure. The approach can be performed for the 

static and dynamic parameters. In the case of the static analysis, the influence of the initial 

prestress level on displacements, maximum effort of structure, and stiffness of the structure is 

investigated. For the dynamic analysis, the influence of the initial prestress on the natural and 

free vibrations is explored. Finally, the dynamic stability analysis examines the influence of the 

initial prestress level on the limits of the instability regions of the structure.        
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4.2. Qualitative analysis 

The qualitative analysis is the first step to understand the unique properties of tensegrity 

structures. This assessment is required to determine the immanent features such as infinitesimal 

mechanisms and self-stress states which stabilize the mechanisms [54, 96, 152]. The qualitative 

analysis can be performed using the existing form-finding methods. The methods often used 

include, e.g., the spectral analysis of truss matrices [152], genetic algorithms [153], iteration 

method [154], the force density method [63], the dynamic relaxation [77], and the singular value 

decomposition (SVD) of the extension matrix 𝐁 [28, 148, 155].  

Two of the mentioned above methods are used in the work. The first method chosen to 

perform the evaluation is a spectral analysis of the truss matrices. This method allows not only 

the identification of self-stress states and the mechanisms, but also to determine if the 

mechanism is infinitesimal or not. As a result, the method determines all existing self-stress 

states of the structure and verifies whether any existing state provides stability to the structure, 

i.e., introduces the appropriate forces to elements (struts are compressed, cables are tensed) and 

ensures the stable equilibrium of the structure. If none of the identified self-stress states 

correctly defines the elements in a structure, a superimposed state is necessary. Sometimes, the 

solution of this problem (superposition) can be difficult to obtain, then, the second method can 

be applied. The genetic algorithm (GA), can be used in cases when the existing self-stress state 

is not sufficient, and an appropriate set of forces must be introduced to the structure. The GA 

method allows identifying a correct self-stress state for the structure.    

4.2.1. Spectral analysis of truss matrices  

The identification of characteristic tensegrity features is performed using the spectral 

analysis of the truss matrices. The equilibrium equation can be presented in the form of stresses 

[28]: 

𝐁𝑇𝛔 = 𝐏   (4.1) 

where 𝐁(∈ ℝ𝑛x𝑚) is an extension matrix, 𝛔(∈ ℝ𝑛x1) is a stress vector, 𝐏(∈ ℝ𝑚x1) is an 

external load vector. 

 

The system of stress equations (4.1) is presented after symmetrization of the equilibrium 

equations in the form:   

𝐃𝐒 = 𝐁𝐏 (4.2) 
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where 𝐃 = 𝐁𝐁𝑇 is a compatibility matrix, 𝐒(∈ ℝ𝑛x1) is a longitudinal forces vector (initial 

prestress vector).  

 

The spectral analysis of compatibility matrix  𝐃(∈ ℝ𝑛x𝑛) leads to identifying the self-

stress states of the structure: 

(𝐃 − 𝜇𝐈)𝐲 = 0     (4.3) 

where 𝜇 are eigenvalues and 𝐲 are eigenvectors of the compatibility matrix 𝐃. 

 

The eigenvalues can be expressed as: 

𝐇 = {𝜇1 𝜇2    … 𝜇𝑛}     (4.4) 

 

The self-stress state can be considered as an eigenvector 𝐲𝑆 = 𝐲𝑖(𝜇𝑖 = 0) related to the zero-

eigenvalue appearing in the matrix (4.4).    

The spectral analysis of linear stiffness matrix  𝐊𝐿(∈ ℝ𝑚x𝑚) identifies the mechanisms of 

the structure: 

(𝐊𝐿 − 𝛾𝐈)𝐱 = 0     (4.5) 

where 𝛾 are eigenvalues and 𝐱 are eigenvectors of the stiffness matrix 𝐊𝐿. 

 

The eigenvalues expressed as: 

𝐋 = {𝛾1 𝛾2    … 𝛾𝑚}     (4.6) 

The mechanism can be understood as an eigenvector 𝐱𝑖(𝛾𝑖 = 0) related to the zero eigenvalue 

of the matrix (4.6). 

If the self-stress state 𝐲𝑖(𝜇𝑖 = 0) is defined, the geometric stiffness matrix  𝐊𝐺(𝐒)(∈

ℝ𝑚x𝑚) is built, where 𝐒 ≡ 𝐲𝑖(𝜇𝑖 = 0). The full solution of the eigen problem is provided by 

the spectral analysis of the stiffness matrix in terms of the effect of self-equilibrated forces 𝐒: 

(𝐊𝐿 + 𝐊𝐺(𝐒) − σ𝐈)𝐳 = 0     (4.7) 

where σ are eigenvalues and 𝐳 are eigenvectors of matrix (4.7). 

 

If the eigenvalues of (4.7): 

𝐎 = {𝜎1 𝜎2    … 𝜎𝑛}     (4.8) 
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are positive numbers, the mechanism is infinitesimal and the structure is stable. Zero 

eigenvalues are related to finite mechanisms, whereas negative eigenvalues are responsible for 

the instability of the structure. 

 In the case of tensegrity domes, several self-stress states may occur in the structure, but 

none of them will stiffen the infinitesimal mechanism. Nonetheless, the superposition of self-

stress states allows introducing the symmetric self-stress state 𝐲𝑠 to reduce the mechanism.  

4.2.2. Genetic algorithm 

The genetic algorithm is one of the most popular computational algorithms for searching 

problems based on the mechanics of natural selection and genetics. For the tensegrity systems, 

genetic algorithm is commonly used as form-finding method for regular [153, 156, 157] and 

irregular [158-160] structures. Nonetheless, it can also be used as tool for determination the 

values of initial prestress for the existing structures [161]. An initial random population of 

feasible solutions evolves to create a better solution based on genetic operators, i.e., parent 

selection, crossover, or mutation. Then provide the best-selected solution, e.g., set of self-

equilibrated forces in elements.   

The first part of the algorithm relies on the selection of appropriate groups of elements. 

The selection can be completed automatically or manually. The automatic selection usually 

consists of the length selection. The groups of elements are divided according to their length 

and type. This method can be less precise for structures with elements of comparable lengths. 

The manual selection is more complicated and involves creating groups manually. Due to the 

specificity of tensegrity structures, the selection is conducted in a mixed way, i.e., partly 

automatically and partly manually. Two types of the element groups (tensed or compressed) 

are used. These groups lead to different definitions in the encoding procedure. An automatic 

selection was then completed within these groups based on the length selection. The set of all 

elements 𝚪 is divided into the sets of elements with the same length 𝒈𝑖: 

𝒈𝑖 = {𝑒𝑙, ⋯ , 𝑒𝑧},    𝒈𝑖 ∈ 𝚪 (4.9) 

where 𝑒𝑙 and 𝑒𝑧 are, respectively, the first and last element of group. For each group of elements 

𝒈𝑖, the normalized longitudinal force in element 𝑆𝑒 is equal to: 

𝑆𝑒 =
±𝑆𝑖

𝑆𝑚𝑎𝑥
, (4.10) 

where ±𝑆𝑖 is a value of 𝑖-th initial prestress level (“+” for tensed element, “–” for compressed 

element) and 𝑆𝑚𝑎𝑥 is a maximum value of the initial prestress. 
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The initialization of the population based on the given parameters is required. As in the 

first step, it can be completed in two ways, i.e., automatically or manually. For the purpose of 

this work, the initial population is prepared automatically by encoding the number of solutions 

in the populations and a number of searched genes. Obtaining an optimal result requires 

significant computational effort. Genetic operators are used for the natural selection of valuable 

solutions. The leading operators in the genetic algorithm are: selection, crossover and mutation. 

The selection operator prefers better solutions (chromosomes) to pass its genes to the algorithm 

without mutation. The crossover combines the features of the genes of two parents to form two 

outcomes. The mutation operator is applied on the chromosome generated from the crossover 

operation with the probability of mutation. There are several methods for genetic operators. The 

following parameters were proposed: 

− parent selection methods: steady state selection (in each generation, a few good 

chromosomes are selected to create a new offspring; then, some of the bad (with low 

fitness) chromosomes are removed, and the new offspring is placed in their place; the rest 

of the population survives to the new generation), 

− crossover type: scattered (it randomly selects the gene from one of two parents), 

− mutation type: random (the values of some genes change randomly; the number of genes 

is specified on the basis of the mutation number of genes or the percentage of genes to 

mutate; for each gene, a random value is selected according to the range specified by the 

minimum and maximum value), 

− number of genes: the number of the groups of elements, 

− percentage of genes to mutate: 10. 

For chosen operators, the following parameters must be specified, i.e.: 

− population size, 

− number of generations, 

− solutions in the population. 

The entire procedure consists of constant reevaluation of provided values, to obtain the best-

fitted solution in the result (Fig. 4.1).  
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Fig. 4.1. Genetic algorithm procedure 

The most critical part of the genetic algorithm is the fitness function. This function 

determines how the obtained solution fits this particular problem. In the case of seeking of the 

self-stress state, the fitness function proposed in this paper is equal to: 

𝐹 = 𝐹1 · 𝐹2 (4.11) 

where the components 𝐹1, 𝐹2 are described as follows:  

𝐹1 = {
0, 𝑖𝑓 the stiffness matrix [𝐊𝐿 + 𝐊𝐺(𝐒)]is not positive definite

1, 𝑖𝑓 the stiffness matrix [𝐊𝐿 + 𝐊𝐺(𝐒)]is positive definite
},    

𝐹2 = 
1

√𝐸𝑁
 

(4.12) 

where 𝐸𝑁 is the equilibrium of nodes. There is no physical interpretation of the equilibrium of 

nodes, which, for the sake of simplicity, was assumed as: 

𝐸𝑁 = ∑[(𝑆𝑖𝑥)
2 + (𝑆𝑖𝑦)

2
𝑛

𝑖=1

+ (𝑆𝑖𝑧)
2] (4.13) 

where 𝑆𝑖𝑥, 𝑆𝑖𝑦, 𝑆𝑖𝑧 are force projections. 
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The feasible solution is obtained by maximizing the fitness function (4.11). The values of 

the fitness function should increase with the number of generations. The appropriate solution 

has to satisfy the stable equilibrium. 

4.3. Quantitative analysis 

The quantitative analysis includes static, dynamic, and dynamic stability analyses. The 

impact of the initial prestress on static and dynamic parameters is analyzed, as well as the 

behaviour of the structure under external load. The analysis starts with an identification of the 

maximum (𝑆𝑚𝑎𝑥) and minimum (𝑆𝑚𝑖𝑛) levels of initial prestress. The maximum level of initial 

prestress (𝑆𝑚𝑎𝑥) depends on the maximum effort of the structure (W𝑚𝑎𝑥), where W𝑚𝑎𝑥 depend 

on the load-bearing capacity (𝑁𝑅𝑑) and maximum normal force (𝑁𝑚𝑎𝑥). The assumption is to 

not exceed the range W𝑚𝑎𝑥 < 1. The minimum levels of initial prestress (𝑆𝑚𝑖𝑛) depends only 

on the geometry of the structure and load conditions. The 𝑆𝑚𝑖𝑛 level is selected when the 

elements in the structure appropriately identified, i.e., cables are tensed and struts are 

compressed. 

4.3.1. Static analysis 

The static analysis of the traditional lattice structures can be performed assuming small 

displacements, i.e., a linear geometric model. The quasi-linear model (second-order theory) is 

also inadequate. Both approaches do not take into account the stiffening of the structure under 

the influence of external load. In tensegrity structures, the load causes displacements in 

accordance with the form of the infinitesimal mechanism that induces additional prestress of 

the structure – tensile forces generate additional tension in the cables and compression in the 

struts. For such regimes, the initial response should not be used to determine the behavior of 

the structure. Therefore, the analysis must be carried out with the assumption of the hypothesis 

of large displacements (third-order theory).  

To illustrate the influence of external loads on the stiffening, two approaches are used. The 

applied methods are the quasi-linear approach (second-order theory):     

[𝐊𝐿 + 𝐊𝐺(𝐒)]𝐪 = 𝐏 (4.14) 

and non-linear approach (third-order theory):  

[𝐊𝐿 + 𝐊𝑆]𝐪 = 𝐏,    𝐊𝑆 = 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) + 𝐊𝑁𝐿(𝐪) (4.15) 
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The analysis concerns the influence of the initial prestress level 𝑆 (𝐒 = 𝐲𝑠𝑆) on the 

displacements 𝐪 and normal forces 𝐍. Additionally, the following parameters are determined: 

− maximum effort of the structure W𝑚𝑎𝑥: 

   W𝑚𝑎𝑥 = 𝑁𝑚𝑎𝑥/𝑁𝑅𝑑 (4.16) 

− stiffness of the structure described by the Global Stiffness Parameter (𝐺𝑆𝑃): 

𝐺𝑆𝑃 =
[𝐪(𝑆𝑚𝑖𝑛)]𝑇𝐊S(𝑆𝑚𝑖𝑛)𝐪(𝑆𝑚𝑖𝑛)

[𝐪(𝑆𝑖)]𝑇𝐊S(𝑆𝑖)𝐪(𝑆𝑖)
 (4.17) 

where 𝐊𝑆(𝑆𝑚𝑖𝑛) and 𝐪(𝑆𝑚𝑖𝑛) are a secant stiffness matrix and a design displacement vector 

with a minimum initial prestress level, and 𝐊𝑆(𝑆𝑖) and 𝐪(𝑆𝑖) at i-th prestress level.       

 

4.3.2. Dynamic analysis 

The ability to control not only the static, but also dynamic parameters is an important 

feature of tensegrity structures. The dynamic response of the tensegrity system investigated 

using the modal analysis [75, 82, 162, 163]. The impact of the initial prestress level on natural 

and free vibrations is analyzed. In case of the vibrations, the time independent external load is 

treated as an initial disturbance of the equilibrium state. Taking into account the harmonic 

motion 𝐪(𝑡) = �̃�sin (2𝜋𝑓𝑡), where �̃�(∈ ℝ𝑚x1) is an amplitude vector, and the non-linear 

equation of motion is as follows: 

   [𝐊𝐿 + 𝐊𝐺 − (2𝜋𝑓)2𝐌]�̃� = 𝟎 (4.18) 

where  𝐌(∈ ℝ𝑚x𝑚) is a consequent mass matrix, 𝑓 is a natural (𝑓𝑖(0)) or free (𝑓𝑖(𝑃)) 

frequency of vibrations.  

 

In the case of natural vibrations (𝑓𝑖(0)), the geometry stiffness matrix depends only on the 

self-equilibrium system of longitudinal forces 𝐒, consequently 𝐊𝐺 = 𝐊𝐺(𝐒). For tensegrity 

domes characterized by infinitesimal mechanisms, the omission of the influence of prestress 

(𝐒 = 𝟎) in (4.18) leads to zero natural frequencies. The number of them is equal to the number 

of the infinitesimal mechanisms, and the forms of vibrations correspond to the forms of 

mechanisms.  

In the case of free vibrations (𝑓𝑖(𝑃)), the geometry stiffness matrix depends additionally 

on the longitudinal forces 𝐍(∈ ℝ𝑛x1) caused by the external load: 
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      𝐊𝐺 = 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) (4.19) 

 

In order to calculate the axial forces, a geometrically nonlinear model must be used, 

assuming the hypothesis of large displacements, i.e., nonlinear theory of elasticity in terms of 

the Total Lagrangian (TL). The following equation need to be solved:   

      [𝐊𝐿 + 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) + 𝐊𝑁𝐿(𝐪)]𝐪 = 𝐏 (4.20) 

where 𝐊𝑁𝐿(𝐪)(∈ ℝ𝑚x𝑚) is a non-linear displacement stiffness matrix.  

 

4.3.3. Dynamic stability analysis 

Dynamic instability analysis (or dynamic instability) leads to the identification of the 

resonance frequencies of periodic loads and, consequently, to the determination of parametric 

resonance regions (unstable regions). The most common technical application problem is the 

analysis of unstable regions at a given constant value 𝑃 of periodic load:  

      𝑃(𝑡) = 𝑃 + 𝑃𝑡cos (𝜃𝑡) (4.21) 

where 𝑃𝑡 is an amplitude and 𝜃 is a frequency of the periodic load. The instability regions occur 

at the free frequencies 𝛺𝑖, 𝛺𝑗 of structures loaded by constant values:  

𝛺 =
𝛺𝑖

𝑘
    or    𝛺 =

𝛺𝑖 ± 𝛺𝑗

2𝑘
      𝑘 = 1,2, … ;  𝑖 ≠ 𝑗 (4.22) 

 

The first case (4.221) represents periodic resonances, and the second one (4.222) – combined 

resonances. From the technical point of view, the main instability regions are most important, 

i.e., periodic resonances of the first order (𝑘 = 1).  

The study of structural instability problems leads to nonlinear issues that solved by iterative 

or incremental-iterative analysis of large displacement gradients. However, in the case of 

dynamic instability analysis, the nature of motion is studied. A quasi-linear approach is 

sufficient to determine the conditions under which the motion is of an unsteady nature, with 

solutions that increase indefinitely with time. Admittedly, the determination of the magnitude 

of the amplitudes of these oscillations can only be obtained from nonlinear equations of 

vibration, no less, without knowing the magnitude of the amplitudes, the quasi-linear theory 

gives a sufficiently complete and accurate view of the issue of instability.  
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The equation of motion with time-varying coefficients with the inclusion of periodic load 

(4.21) takes the following form: 

      𝐌�̈�(𝑡) + [𝐊𝐿 + 𝑃(𝑡)𝐊𝐺]𝐪(𝑡) = 𝟎 (4.23) 

where �̈�(𝑡)(∈ ℝ𝑚x1) is an accelerator vector.  

 

The boundaries of the stable and unstable regions (Ince-Strutt maps) are determined by the 

periodic solutions of the equation of motion (4.23). The problem of dynamic instability analysis 

leads to determining the conditions under which equation of motion has non-zero solutions. 

The dynamic instability analysis is carried out using the harmonic balance method [148, 164] 

that leads to equation:  

det {𝐊𝐿 + (1 ±
1

2

𝑃𝑡

𝑃
)𝐊𝐺 −

𝜃2

4
𝐌} = 0 (4.24) 

which solution leads to the determination of the main unstable regions 𝐴𝜂(𝑆𝑖) at 𝑖-th initial 

prestress level in the plane of a pulsatility index  𝜐 and a resonance frequency 𝜂: 

𝜐 =
𝑃𝑡

𝑃
,   𝜂 =

𝜃

2𝜋
 (4.25) 

 The influence of the initial prestress level 𝑆 on the distribution and range of parametric 

resonance regions is determined using the nondimensional parameter 𝜆. This parameter 

measures the changes in areas of unstable regions as the initial prestress level increases: 

𝜆 =
𝐴𝜂(𝑆𝑖)

𝐴𝜂(𝑆𝑚𝑖𝑛)
 (4.26) 

where 𝐴𝜂(𝑆𝑚𝑖𝑛) is an area at the minimum initial prestress level. 
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5. Geiger domes 

5.1. Introduction 

The origin of the Geiger dome starts with a patent of a roof structure presented by David 

Geiger [115] in 1973. The structure was described as a “curved roof on cable spans” with a 

simple design and eventually transformed into a cable-strut dome. Geiger’s research aimed to 

combine the principle of tensegrity systems with load-bearing membrane surfaces and achieve 

maximum spans with a minimum construction weight. The re-evaluation of Fuller’s pioneering 

work led to an innovative stadium roof enclosure that would be as economical as an air-

supported structure (Fig. 5.1).  

a) b) 

  

Fig. 5.1. Design of tensegrity dome by: a) Fuller, b) Geiger [130] 

The patent of the Geiger dome (implemented on the roof of the Olympic Hall in Seoul) 

[109, 130, 131] consisted of a system of eight flat repeating load-bearing girders that were not 

touching at the center (open upper section) and three tension hoops covered with a membrane 

(Fig. 5.2a). The load-bearing girders are connected with circumferential cables. After its first 

appearance, the Geiger dome was the main subject of many scientific works. The first 

modifications of the Geiger dome led to adjusting the cable layout and providing additional 

cables. The modification was presented by Kim et al. [165] and relied on the additional 

intersecting bracing cables (Fig. 5.2b). In later works, the crossing cables were removed and 

only the additional circumferential cables were left [166] (Fig. 5.2c). The original geometry of 

the Geiger dome motivated other scientists to create new shapes (generate new topologies) [76, 

80, 167], and present new form-finding [154, 168, 169] and optimization methods [80, 170, 
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171]. New cable dome types appeared, based on a Geiger dome patent [123, 172]. As part of 

an experimental study, different construction methods [173] and shape-forming processes [85, 

174] were presented. The new topology aimed to achieve the desired performance criteria and 

enable control of parameters such as stiffness [78] and stability performance [175-177].   

a) b) 

 

 
c) d) 

  

Fig. 5.2. Geometry of the Geiger dome: a) original patent implemented in Seoul Arena [130], b) 

braced dome [165], d) modified dome [125] c) modified dome [166]  

 A stable configuration of a cable-strut dome structure consists of an appropriate 

geometry solution and state of initial prestress that provides stability to elements. In the case of 

a “pure tensegrity” structure, the initial prestress occurs naturally, stiffens the structure, and 

reduces infinitesimal mechanisms. In the case of the original Geiger dome, not all existing self-

stress states meets those criteria. For the domes with additional modifications, the self-stress 

state must be accurately derived using the appropriate methods [83, 178-183]. Introducing an 

appropriate self-stress state allows for further analysis of the dome. Due to a non-conventional 

shape, the investigation of the structure’s response to different load conditions is significant, 

including simple load conditions, like a self-weight [126], and also more complex ones, for 

example, non-uniform snow load [184]. That is why the failure analysis and behaviour of the 

domes must be thoroughly analyzed [185-188].  
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The static analysis of tensegrity domes includes the influence of the initial prestress level 

on the structure’s response. The literature review shows works that study the influence of the 

self-stress state on the displacements [76, 78], effort, and stiffness of the structure [155]. The 

dynamic analysis of the Geiger domes, on the other hand, is a subject that is still understudied. 

The papers that include dynamic analysis of the Geiger dome focused mostly on the natural 

frequencies analysis [55, 56, 148], and only one type of dome was always concerned. More 

widely the dynamic analysis was presented in [125, 148, 189, 190]. The papers, the subject of 

which was the complete dynamic analysis of the Geiger dome also appeared [124, 191]. 

In this work, static and dynamic analysis is performed on the Geiger domes. The 

differences are in the geometry of a load-bearing girder and the different numbers of girders in 

the dome structure are presented. The upper section of girder is presented in two variants, i.e., 

close upper section type A and open upper section type B. The domes presented with a regular 

cable layout (according to Geiger patent) [115] – regular Geiger domes, and with additional 

circumferential cables (according to [166]) – modified Geiger domes. The domes with different 

number of girders are analyzed. The names of analyzed domes are acronyms: R – regular dome, 

M - modified dome, G – Geiger dome, the number – the number of load-bearing girders, and 

letter A or B – girders type, e.g., “RG 6A” is the regular Geiger dome with 6 girders type A. 

5.2. Geometrical design 

The geometry of the Geiger dome consists of uniformly distributed flat load-bearing 

girders. Two geometrical designs are proposed. First, own solutions are presented (section 

5.2.1). The proposed designs are the main subject of further analysis. Next, due to the Geiger 

dome’s popularity, the solutions known from the literature are considered (section 5.2.2). 

5.2.1. Proposed design solutions 

The proposed design solutions contain small-scale domes. The load-bearing girder consists 

of cables (elements: 1, 2, 3, 4, 5, 6) and struts (elements: S1, S2, S3) located in the same plane 

(Fig. 5.3). The flat load-bearing girders are connected into a spatial structure with permanent 

circumferential cables (elements: C1, C2, C3, C4) and by additional cables (marked in blue), 

that are optional in the structure (elements: C5, C6). Fig. 5.3 presents the geometry of a regular 

flat girder – type A (Fig. 5.3a) and modified (with cables C5, C6) – type B (Fig. 5.3b). The 

node coordinates of a load-bearing girder are presented in Table 5.1. The diameter of 12 m and 

the height of 3.25 m of all domes were adopted. Domes are supported in every external node of 

the lowest section of the girder. The geometry of domes consisting of six load-bearing girders 
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is presented in Fig. 5.4. In this work, in addition to domes with six load-bearing girders, the 

domes with 8 (Fig. 5.5), 10 (Fig. 5.6) and 12 (Fig. 5.7) load-bearing girders are considered.  

      a) b) 

  

Fig. 5.3. Load-bearing girder of the Geiger dome: a) type A, b) type B   

Table 5.1. Node coordinates [m] of the load-bearing girders of the Geiger dome 

Coordinate 
Type of 

girder 

Number of nodes 

1 2 3 4 5 6 7 

x 

A 0.0 
2.0 4.0 6.0 

B 0.5 

z A and B 2.1 1.5 1.85 0.45 1.15 -1.15 0.0 

 

a) b) 

  
c) d) 

  

Fig. 5.4. Geiger dome: a) RG 6A, b) MG 6A, c) RG 6B, d) MG 6B  
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a) b) c) d) 

    

Fig. 5.5. Geiger dome: a) RG 8A, b) MG 8A, c) RG 8B, d) MG 8B  

 

a) b) c) d) 

    

Fig. 5.6. Geiger dome: a) RG 10A, b) MG 10A, c) RG 10B, d) MG 10B  

 

a) b) c) d) 

    

Fig. 5.7. Geiger dome: a) RG 12A, b) MG 12A, c) RG 12B, d) MG 12B  

5.2.2. Solutions from the literature 

A large group of scientists is investigating the Geiger dome. Each work contains different 

solutions for the girder geometry and structural system of a dome. Three examples of domes 

with similar geometry, i.e., 12 load-bearing girders, regular cable layout, type B (RG 12B) are 

shown. First, the dome presented by Jiang et al. [178] (Fig. 5.8) is considered. The dome is 

approximated to a large-span structure with a width of 100 m and a height of 8.5 m. The dome 

is supported in every external node of the lowest section. The node coordinates for a load-

bearing girder are presented in Table 5.2.  

 



5. Geiger domes 

 43 

 

a) 

 
b) c) 

 
 

Fig. 5.8. Geiger dome by Jiang et al. [178]: a) geometry of a girder, b) 3D view, c) top view  

Table 5.2. Node coordinates [m] of the load-bearing girder of the Geiger dome by [178] 

No. of 

node 
1 2 3 4 5 6 7 

x 5 20 35 50 

z 8.5 3.3 6.5 0.7 3.5 -5.4 0.0 

 

The second example is dome presented by Yuan et al. [180] (Fig. 5.9). The dome is 130 m 

wide and 8 m high. The structure is supported in every external node of the load-bearing girder.    

a) b) 

 
 

Fig. 5.9. Geiger dome by Yuan et al. [180]: a) geometry of a girder, b) 3D view  
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The third example is presented by Malerba et al. [168] (Fig. 5.10) has similar load-bearing 

girder to the one provided in [180]. The dome is also 130 m high and 8 m wide (measuring from 

the level of supports).  

a) 

 
b) c) 

 
 

Fig. 5.10. Geiger dome by Malerba et al. [168]: a) geometry of a girder, b) 3D view, c) top view  

5.3. Qualitative analysis 

The qualitative analysis of the Geiger dome relies on the identification of existing 

infinitesimal mechanisms and self-stress states. These characteristics are not dependent on the 

external loads, the cross-section of the elements, or the physical properties of a structure. Only 

the geometry of a dome is essential. The identification of self-equilibrium forces can be 

performed using several methods. In the case of regular domes, forces are calculated directly 

from the node equilibrium (section 5.3.1). For modified domes, different methods must be 

considered, e.g., spectral analysis (section 5.3.2) genetic algorithm, and others (section 5.3.3).    

5.3.1. Exact solution 

In the case of simple and statically determinate tensegrity structures, the equations for the 

determination of the values of self-equilibrium forces (self-stress state) can be derived from the 

node equilibrium. In the case of Geiger domes, only the regular domes (RG) are suitable to 
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derive the formulas. The formulas on self-equilibrated forces (Table 5.3) depend on the angle 

of inclination of cables of the girder – 𝛼 (Fig. 5.11a, b), the angle between perimeter cables – 

2𝛽 (Fig. 5.11c, d), and the number of load-bearing girders 𝑛𝑔. With these ready-to-use formulas 

(Table 5.3), the self-stress state can be easily derived for each Geiger dome of a regular type 

(RG). It allows proceeding with the next steps of the analysis and reduces the calculation time.     

a) b) 

  
c) d) 

  

Fig. 5.11. View on geometry of the regular Geiger dome: a) load-bearing girder type A, b) load-

bearing girder type B, c) top view on type A dome, d) top view on type B dome 

Table 5.3. Formulas on self-equilibrium forces (self-stress state) for the regular Geiger dome 

Type A Type B 

𝑁1 = constant 

𝑁𝑖 = 𝑁𝑖−1

sin(𝛼𝑖−1)

sin(𝛼𝑖)
;    𝑖 = 2,4,6,8… 

𝑁𝑗 =
𝑁𝑗−2cos(𝛼𝑗−2) + 𝑁𝑗−1cos(𝛼𝑗−1)

cos(𝛼𝑗)
;    𝑗 = 3,5,7… 
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Table 5.3. Formulas on self-equilibrium forces (self-stress state) for the regular Geiger dome - 

Continued 

Type A Type B 

𝑁𝐶𝑘 = 0.5𝑁𝑘

cos(𝛼𝑘)

cos(𝛽)
;    𝑘 = 4,6,8… 

 
𝑁𝐶1 = 0.5𝑁1

cos(𝛼1)

cos(𝛽)
 

𝑁𝐶2 = 0.5𝑁2

cos(𝛼2)

cos(𝛽)
 

𝑁𝑆1 = 𝑛𝑔𝑁2 sin(𝛼2) 𝑁𝑆1 = 𝑁2 sin(𝛼2) 

𝑁𝑆𝑟 = 𝑁2𝑟 sin(𝛼2𝑟) ;    𝑟 = 2,3,4… 

 

5.3.2. Spectral analysis of truss matrices 

The qualitative analysis of regular and modified Geiger dome types A and B is performed 

using the spectral analysis of the linear stiffness matrix and compatibility matrix (see section 

4.2.1). The consideration involves the identification of self-stress states and infinitesimal 

mechanisms of a structure. The summarized results for considered domes, i.e., RG 𝑛𝑔A, MG 

𝑛𝑔A, RG 𝑛𝑔B, MG 𝑛𝑔B, where 𝑛𝑔 =  {6, 8, 10, 12} number of load-bearing girders, are 

contained in Table 5.4. 

Table 5.4. Results of the qualitative analysis of Geiger domes 

No. of the load-

bearing girders 

(𝑛𝑔) 

No. of 

nodes 

No of 

d.o.f 

No. of 

elements 

(𝑛) 

No. of 

struts (𝑛𝑠) 

No. of 

mechanisms (𝑛𝑚) 

No. of 

self-stress 

states 

Type A 

6 32 78 61 (73) 13 18 (8) 1 (3) 

8 42 102 81 (97) 17 22 (8) 1 (3) 

10 52 126 101 (121) 21 26 (8) 1 (3) 

12 62 150 121 (145) 25 30 (8) 1 (3) 

Type B 

6 42 108 78 (90) 18 31 (21) 1 (3) 

8 56 144 104 (120) 24 41 (27) 1 (3) 

10 70 180 130 (150) 30 51 (33) 1 (3) 

12 84 216 156 (180) 36 61 (39) 1 (3) 

(.) – the results for the modified domes (MG) 
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The modification of cable layout leads to a reduction of the number of infinitesimal 

mechanisms, at the same time increasing the number of self-stress states. In the case of the 

regular Geiger dome (RG), the number of infinitesimal mechanisms (𝑛𝑚) depends on the 

number of bearing girders, i.e., the number of struts (𝑛𝑠). The dependency is defined as follows: 

type A:  𝑛𝑚 = 𝑛𝑠 + 5;     

type B:  𝑛𝑚 = 0.5(𝑛 − 𝑛𝑠) + 1 
(5.1) 

The number of mechanisms of a modified dome type A is not depending on the number of 

girders, eight mechanisms were identified for each dome. On the other hand, the number of 

mechanisms of modified dome type B (MG 𝑛𝑔B) can be calculated as: 

𝑛𝑚 = 𝑛𝑠 + 3     (5.2) 

The number of self-stress states is not depending on the number of load-bearing girders. 

Regular domes (RG) are featured by one self-stress state (Table 5.5). The self-stress state 

obtained from the spectral analysis is the same as one obtained through the formulas on self-

equilibrated forces (Table 5.3). In turn, the modified domes (MG) are featured by three self-

stress states. In the case of the modified Geiger domes (MG), superimposed self-stress states 

(Table 5.6) were used for further analysis. The values of obtained self-stress states were 

normalized in the way that force in the longest strut is equal to -1. The form of the infinitesimal 

mechanism of Geiger domes indicates a tendency to tilt (Fig. 5.12).      

Table 5.5. Values of self-stress state 𝐲𝑆 of the regular Geiger domes (RG) 

Type A Type B 

el. 𝐲𝑆  el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 

S1 

-0.380(6) 

-0.507(8) 

-0.634(10) 

-0.761(12) 

1 0.511 C1 

1.739(6) 

2.272(8) 

2.814(10) 

3.359(12) 

S1 -0.085 1 0.514 C1 

1.739(6) 

2.272(8) 

2.814(10) 

3.359(10) 

S2 -0.304 2 0.368 C2 

0.869(6) 

1.136(8) 

1.407(10) 

1.679(12) 

S2 -0.304 2 0.372 C2 

0.869(6) 

1.361(8) 

1.407(10) 

1.679(12) 

S3 -1.000 
3 

4 
0.921   S3 -1.000 

3 

4 
0.921 C3 

0.362(6) 

0.473(8) 

0.586(10) 

0.699(12) 

  
5 

6 
2.006     

5 

6 
2.006 C4 

0.507(6) 

0.663(8) 

0.821(10) 

0.979(12) 
(6) dome with 6 girders; (8) dome with 8 girders; (10) dome with 10 girders; (12) dome with 12 girders 
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Table 5.6. Values of self-stress state 𝐲𝑆 of the modified Geiger domes (MG) 

Type A Type B 

el. 𝐲𝑆  el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 

S1 

-0.228(6) 

-0.304(8) 

-0.379(10) 

-0.455(12) 

1 0.306 C1 

1.739(6) 

2.272(8) 

2.814(10) 

3.359(12) 

S1 -0.051 1 0.308 C1 

1.739(6) 

2.272(8) 

2.814(10) 

3.359(12) 

S2 -0.265 2 0.220 C2 

0.756(6) 

0.988(8) 

1.223(10) 

1.461(12) 

S2 -0.265 2 0.223 C2 

0.756(6) 

0.988(8) 

1.223(10) 

1.461(12) 

S3 -1.000 
3 

4 
0.801   S3 -1.000 

3 

4 
0.801 C3 

0.217(6) 

0.283(8) 

0.351(10) 

0.419(12) 

  
5 

6 
2.006     

5 

6 
2.006 C4 

0.303(6) 

0.396(8) 

0.491(10) 

0.586(12) 

    C5 

0.236(6) 

0.308(8) 

0.381(10) 

0.455(12) 

    C5 

0.236(6) 

0.308(8) 

0.381(10) 

0.455(12) 

    C6 

0.227(6) 

0.297(8) 

0.368(10) 

0.439(12) 

    C6 

0.227(6) 

0.297(8) 

0.368(10) 

0.439(12) 
(6) dome with 6 girders; (8) dome with 8 girders; (10) dome with 10 girders; (12) dome with 12 girders 

 

a) b) 

  
c) 

 

Fig. 5.12. Form of first infinitesimal mechanism of MG 6A dome: a) 3D view, b) top view, c) side 

view 



5. Geiger domes 

 49 

 

The qualitative analysis of Geiger domes determined following tensegrity features, i.e., the 

dome is a truss (T), with a continuous net of tensed cables (C), and discontinues net of 

compressed struts (D) surrounded by cables, and it features the existence of the self-stress state 

(SS) and infinitesimal mechanism (M). Nonetheless, not every existing self-stress state stiffens 

the mechanism and a superimposed self-stress state must be introduced to the structure. 

Therefore, the analyzed Geiger domes are classified as structures with tensegrity features of 

class 1.  

5.3.3. Genetic algorithm 

The qualitative analysis of the regular type B Geiger dome (RG 12B) (Fig. 5.8) was also 

performed using the genetic algorithm. The procedure described in section 4.2.2 was 

implemented to calculate the values of self-equilibrated forces. In the case of the genetic 

algorithm, the calculations were performed in two series to obtain more accurate results. The 

algorithms parameters were selected as follows: 

− population size: 1000 (Series 1), 1100 (Series 2), 

− number of generations: 100 (Series 1), 150 (Series 2), 

− solutions in the population: 200 (Series 1), 250 (Series 2), 

− number of genes: equals the number of groups of elements.  

The results obtained by the genetic algorithm were compared to one obtained by exact 

methods in paper [182]. The effectiveness of qualitative methods presented in sections 5.3.1 

and 5.3.2, has been assessed by comparison with the method used by Jiang et al. [178], i.e., 

catenary equation-based component force balancing method. Summarized results are provided 

in Table 5.7. The original values from the paper (Original) were normalized (Norm.) in a way 

that the value in the longest strut is equal to -1 for a comparison.    

Table 5.7. Values of self-stress state of the Geiger dome obtained by different methods 

Groups  

of  

Elements 

Jiang et al. [178] Present Study 

Original Norm. 
Relative 

Error 

Exact 

Solution 

GA 

Series 1 

Relative 

Error 

GA 

Series 2 

Relative 

Error 

1 431.514 1.274 1% 1.284 1.315 2% 1.488 16% 

2 269.694 0.796 2% 0.814 1.163 43% 0.736 10% 

3 701.205 2.069 2% 2.109 2.486 18% 2.235 6% 
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Table 5.7. Values of self-stress state of the Geiger dome obtained by different methods - Continued 

Groups  

of  

Elements 

Jiang et al. [178] Present Study 

Original Norm. 
Relative 

Error 

Exact 

Solution 

GA 

Series 1 

Relative 

Error 

GA 

Series 2 

Relative 

Error 

4 751.292 2.217 2% 2.255 2.336 4% 2.240 1% 

5 1452.497 4.287 3% 4.401 4.826 10% 4.511 2% 

6 941.433 2.778 6% 2.952 2.952 0% 2.940 0% 

C1 1818.387 5.367 0% 5.366 5.359 0% 5.329 1% 

C2 1451.127 4.283 0% 4.282 4.416 3% 4.273 0% 

C3 833.467 2.459 0% 2.459 2.527 3% 2.848 16% 

C4 520.917 1.537 0% 1.537 2.213 44% 1.372 11% 

S1 −57.534 −0.169 0% −0.169 −0.201 19% −0.197 17% 

S2 −140.228 −0.414 0% −0.414 −0.524 27% −0.402 3% 

S3 −338.833 −1.000 0% −1.000 −1.000 0% −1.000 0% 

 

The method provided in [178] gives the 0% error in groups of circumferential cables (Ci) 

and struts (Si), whereas values for girder cables (i) are subjected to errors up to 6%. In the case 

of the genetic algorithm, the accuracy of the obtained results is highly dependent on the 

parameters of the algorithm, higher convergence could be achieved by increasing these 

parameters. Obtained values are considered satisfactory, and meet the requirement of stable 

equilibrium (the equilibrium of nodes is close to zero).   

5.4. Quantitative analysis 

The quantitative assessment is the second step of the analysis of tensegrity structures. It is 

a parametric analysis leading to the determination of the impact of the initial prestress level on 

the behaviour of the structure under external load. Unlike the qualitative analysis, the results of 

the quantitative analysis depend on the material and the cross-sections of the elements. It is 
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assumed that cables are made of steel S460N. The “Type A” cables with Young modulus 210 

GPa [192] are used. The struts are made of hot-finished circular hollow sections (steel S355J2) 

with Young modulus 210 GPa. The density of steel is equal 𝜌 = 7860 kg/m3. 

The quantitative assessment is carried out in terms of static, dynamic, and dynamic stability 

analysis. All cases concern the small-scale domes. Static analysis is provided for small-scale 

domes consisted of six load-bearing girders (section 5.2.1). The qualitative analysis of the 

small-scale domes was performed in section 5.3.2. Dynamic analysis is provided for domes 

consisting of different numbers of load-bearing girders, i.e., 6, 8, 10, and 12 girders are 

considered. In turn, dynamic stability analysis is provided for small-scale Geiger domes 

considered in the static analysis.       

In the case of small-scale domes, four variants of geometry are considered, i.e., dome types 

RG 6A, RG 6B, MG 6A, and MG 6B (Fig. 5.3). The cables with the diameter 𝜙 = 20 mm and 

load-bearing capacity 𝑁𝑅𝑑 = 110.2 kN are taken into account. For struts, there are rods with a 

diameter 𝜙 = 76.1 mm and thickness 𝑡 = 2.9 mm, with lengths 0.6 m, 1.4 m, and 2.3 m, and 

load-bearing capacity 𝑁𝑅𝑑 = 224.3 kN, 170.5 kN, and 107.1 kN respectively. The external load 

is applied in different positions, i.e., in 𝐏(𝑖), where 𝑖 = 1, 2, 3 (Fig. 5.13). Two values of load 

are considered, i.e., 𝐏(𝑖) = {1 kN, 5 kN}. The analysis includes time-independent and periodic 

type of external load. The minimum prestress level is highly dependent on the load value and 

position of load application (Table 5.8). For some load positions, a higher prestress level is 

required in comparison to others. In turn, the value of the maximum prestress level (𝑆𝑚𝑎𝑥) 

depends on the load-bearing capacity of the most stressed elements. For all structures, it was 

assumed that S𝑚𝑎𝑥 = 50 kN. The maximum effort of cables is  𝑊𝑚𝑎𝑥,𝐶  = 0.95, and the 

maximum effort of struts is  𝑊𝑚𝑎𝑥,𝑆  = 0.48.   

a) b) 

  

Fig. 5.13. Position of the external load on the load-bearing girder: a) type A, b) type B 
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Table 5.8. 𝑆𝑚𝑖𝑛 values of the Geiger domes under external load 

A 

Load value 

B 

Load value 

𝑃 = 1 kN 𝑃 = 5 kN P = 1 kN P = 5 kN 

Load position Load position Load position Load position 

𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 

 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN]  𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN] 

R 2 5 5 8 22 24 R 2 2 2 2 2 2 

M 3 8 12 11 34 36 M 14 10 2 41 26 2 

A – type A, B – type B, R – regular dome, M – modified dome 

 

Additionally, to check the possibility of relating results to the real-scale objects, static 

analysis is performed on the realistic-scale Geiger dome. The realistic-scale dome geometry 

was obtained by the rescaling of the small-scale dome, and resulted in the same self-stress 

values (Table 5.6).  

In the charts the following symbols are used: II – second-order theory, III – third-order 

theory, 1 – external load equal to 1 kN, 5 – external load equal to 5 kN, s – struts, c – cables, R 

– regular dome, M – modified dome, A – type A, B – type B, G1 – realistic dome with 

symmetrical load, G2 – realistic dome with asymmetrical load. For example, the caption “RA 

1(II)” stands for the regular dome type A loaded with force 1 kN analyzed using the second-

order theory, and “G1 (II)” stands for the realistic dome with symmetrical load analyzed using 

the second-order theory.   

5.4.1. Static analysis of small-scale domes 

Static analysis of Geiger domes concerns the impact of the initial prestress level on the 

behaviour of the structure under time-independent external load. In particular, the influence of 

initial prestress level 𝑆 on the displacements (𝑞𝑥, 𝑞𝑧), maximum effort of structure 𝑊𝑚𝑎𝑥, and 

stiffness parameter 𝐺𝑆𝑃 is analyzed. The displacements are measured for the node located on 

the girder opposite to the location of the loaded node (node d) (Fig. 5.13). The examples are in 

order to compare the static response of different dome types. Firstly, regular and modified 

domes type A are compared (Example 1), then regular domes type A and B (Example 2), and, 

at the end, regular and modified domes type B (Example 3) are considered.  
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Example 1  

Subject of the comparison: RG 6A (Fig. 5.14a) and MG 6A (Fig. 5.14b) domes – behaviour 

under the symmetrical load 

Aim of the comparison: Whether the modification of the structure matter in the case of 

symmetrical load? 

a)                              RG 6A b)                                MG 6A 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 8 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 3 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 11 kN 

  

Fig. 5.14. External load application in the case of position 𝐏(1) for: a) RG 6A, b) MG 6A  

In order to compare the influence of the initial prestress on the static parameters of the RG 

6A and MG 6A domes (Fig. 5.14), firstly the impact of the initial prestress on the plane 

displacement 𝑞𝑥 (Fig. 5.15) and vertical displacement 𝑞𝑧 (Fig. 5.16) is considered. In the case 

of presented type of load, the influence of the initial prestress level on the displacements is 

absent. The domes are insensitive to the initial prestress. The results obtained from the second-

order theory and third-order theory are fully convergent. The increasing of the external load 

results in a small increasing of displacements. The influence of the initial prestress level on the 

maximum effort of elements 𝑊𝑚𝑎𝑥 (Fig. 5.17) is almost linear, small non-linearity can be 

noticed at low levels of the prestress. The effort of the elements linearly increases with an 

increasing of the initial prestress. The 𝐺𝑆𝑃 parameter, on the other hand, stays constant at value 

1, and does not depend neither on the initial prestress level nor external load value (Fig. 5.18). 
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a) b) 

  

Fig. 5.15. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑥 in the case of the load position 

𝐏(1) for: a) RG 6A, b) MG 6A  

 

a) b) 

  

Fig. 5.16. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑧 in the case of the load position 

𝐏(1) for: a) RG 6A, b) MG 6A  
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a) b) 

  

Fig. 5.17. Impact of the initial prestress 𝑆 on the maximum effort of structure 𝑊𝑚𝑎𝑥 in the case of 

the load position 𝐏(1) for: a) RG 6A, b) MG 6A  

 

a) b) 

  

Fig. 5.18. Impact of the initial prestress 𝑆 on the 𝐺𝑆𝑃 parameter in the case of the load position 𝐏(1) 
for: a) RG 6A, b) MG 6A  

Conclusion of the comparison: The behaviour of regular and modified domes type A under the 

symmetrical load is very similar. The main differences remain only in the values of the 

minimum prestress. In the presented example, the direction of the applied load is inconsistent 

with the direction of the infinitesimal mechanisms of the structures, thus not affecting the 

structure. The additional circumferential cables do not contribute to the static response of the 

dome.      
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Example 2  

Subject of the comparison: RG 6B (Fig. 5.19a) and MG 6B (Fig. 5.19b) domes – behaviour 

under asymmetrical load 

Aim of the comparison: Whether the modification of the structure matter in the case of 

asymmetrical load? 

a)                              RG 6B b)                                MG 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

  

Fig. 5.19. External load application in the case of position 𝐏(3) for: a) RG 6B, b) MG 6B  

The second example focuses on the differences in the behaviour of RG 6B and MG 6B 

domes. The influence of the initial prestress on static parameters in the case of load position 

𝐏(3) is considered. The impact of initial prestress on the displacement 𝑞𝑥 (Fig. 5.20) and 𝑞𝑧 

(Fig. 5.21) is similar for both structures. The discrepancy in results obtained from the second- 

and third-order theory is at the low levels of initial prestress. The nonlinearity increases with an 

increase of the external load. In the case of the maximum effort of structure 𝑊𝑚𝑎𝑥 (Fig. 5.22), 

the impact of the initial prestress is nonlinear. The impact on the 𝐺𝑆𝑃 parameter (Fig. 5.23) is 

considered as linear in the case of low external load, and nonlinearity appears after introducing 

higher load. Additionally, the increase of the external load results in the decrease of the stiffness 

of the structure. In the case of initial prestress level 𝑆 = 50 kN, the decrease is around 60% for 

both domes. The domes characterized by the same level of stiffness. 
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    a) b) 

  

Fig. 5.20. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑥 in the case of the load position 

𝐏(3) for: a) RG 6B, b) MG 6B 

 

a) b) 

  

 Fig. 5.21. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑍 in the case of the load position 

𝐏(3) for: a) RG 6B, b) MG 6B 
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a) b) 

  

Fig. 5.22. Impact of the initial prestress 𝑆 on the maximum effort of structure 𝑊𝑚𝑎𝑥 in the case of 

the load position 𝐏(3) for: a) RG 6B, b) MG 6B 

 

a)  b)  

  

Fig. 5.23. Impact of the initial prestress 𝑆 on the 𝐺𝑆𝑃 parameter in the case of the load position 𝐏(3) 

for: a) RG 6B, b) MG 6B 

Conclusion of the comparison: The analysis of regular and modified Geiger domes aims to 

evaluate the influence of the additional circumferential cables on the static response of the 

structure. Nonetheless, static analysis showed similar behaviour of considered domes. The 

impact of the initial prestress on static parameters is the same regardless of the presence of 

additional cables. The discrepancy in the values obtained from the second- and third-order 

theory are significant only at the low levels of initial prestress (from 𝑆𝑚𝑖𝑛 to 𝑆 = 20 kN). Both 

domes characterized by the same minimum prestress level. In conclusion, the RG 6B dome is 

a better design solution and the dome modification is not affecting the static response of the 

structure.            
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Example 3  

Subject of the comparison: RG 6A (Fig. 5.24a) and RG 6B (Fig. 5.24b) domes – behaviour 

under asymmetrical load 

Aim of the comparison: Whether the upper section type matter in the case of asymmetrical load? 

a)                              RG 6A b)                                RG 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 5 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 22 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

  

Fig. 5.24. External load application in the case of position 𝐏(2) for: a) RG 6A, b) RG 6B  

The third example focuses on the differences in the behaviour of RG 6A and RG 6B domes. 

The influence of the initial prestress level on static parameters in the case of load position 𝐏(2) 

is considered (Fig. 5.24). In contrast to Example 1, the impact of the initial prestress on the 

plane displacement 𝑞𝑥 (Fig. 5.25) and vertical displacement 𝑞𝑧 (Fig. 5.26) can be observed. 

There are also differences in the results obtained from second-order theory (II) and third-order 

theory (III) in the case of the RG 6B dome. The biggest discrepancy is at the low initial prestress 

levels, which increase with an increase in external load. Nonetheless, comparing the 

displacements of RG 6A and RG 6B domes for the same prestress level (Table 5.9), the 

differences between theories are similar. 

Table 5.9. Displacement 𝑞𝑥 for RG 6A and RG 6B domes 

 

P = 1 kN P = 5 kN 

Minimum possible initial prestress level for both domes 

𝑆 = 5 kN 𝑆 = 22 kN 

RG 6A RG 6B RG 6A RG 6B 

Displacement 𝑞𝑥 [mm] 

Second-order theory (II) -18.53 -13.37 -21.04 -15.19 

Third-order theory (III) -15.43 -10.39 -19.54 -13.63 

RE* 20.09% 28.68% 7.68% 11.45% 

RE* – relative error: [(𝑞𝑥(III) − 𝑞𝑥(II)/𝑞𝑥(III)) ∙ 100%]    
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a) b) 

  

Fig. 5.25. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑥 in the case of the load position 

𝐏(2) for: a) RG 6A, b) RG 6B 

 

 

 

 

 

a) b) 

  

Fig. 5.26. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑧 in the case of the load position 

𝐏(2) for: a) RG 6A, b) RG 6B 

Comparing the maximum effort of structure 𝑊𝑚𝑎𝑥, for the RG 6A dome the effort is not 

dependent on the external load and increases linearly (Fig. 5.27a). In turn, for the RG 6B dome 

the situation is opposite, the effort of the structure depends on the external load, and at the low 

levels of prestress, the nonlinear behaviour can be observed (Fig. 5.27b).  

The 𝐺𝑆𝑃 parameter is highly dependent on the value of the external load (Fig. 5.28b). The 

increase from 1kN to 5kN resulted in a decrease in the stiffness of the structure by up to 75% 

for the RG 6A dome, and up to 60% for the RG 6B dome (in the case of the initial prestress 

level 𝑆 = 50 kN). Comparing stiffness increase from 𝑆 = 5 kN to 𝑆 = 50 kN (for P = 1 kN), 

-170

-150

-130

-110

-90

-70

-50

-30

-10

0 5 10 15 20 25 30 35 40 45 50

D
is

p
la

ce
m

en
t 

q
x
 [
m

m
]

S [kN]

RA 1(II) RA 5(II)

RA 1(III) RA 5(III)

-170

-150

-130

-110

-90

-70

-50

-30

-10

0 5 10 15 20 25 30 35 40 45 50

D
is

p
la

ce
m

en
t 

q
x
 [
m

m
]

S [kN]

RB 1(II) RB 5(II)

RB 1(III) RB 5(III)

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

D
is

p
la

ce
m

en
t 

q
z
[m

m
]

S [kN]

RA 1(II) RA 5(II)

RA 1(III) RA 5(III)

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

D
is

p
la

ce
m

en
t 

q
z
[m

m
]

S [kN]

RB 1(II) RB 5(II)

RB 1(III) RB 5(III)



5. Geiger domes 

 61 

 

the increase is up to 8-fold for the RG 6A dome and 11-fold for the RG 6B dome. In the case 

of P = 5 kN (range from 𝑆 = 22 kN to 𝑆 = 50 kN) the increase is 2-fold and almost 5-fold 

respectively.      

a) b) 

  

Fig. 5.27. Impact of the initial prestress 𝑆 on the maximum effort of structure 𝑊𝑚𝑎𝑥 in the case of 

the load position 𝐏(2) for: a) RG 6A, b) RG 6B  

 

a) b) 

  

Fig. 5.28. Impact of the initial prestress 𝑆 on the 𝐺𝑆𝑃 parameter in the case of the load position 𝐏(2) 

for: a) RG 6A, b) RG 6B  

Conclusion of the comparison: The behaviour of domes RG 6A and RG 6B is different due to 

different prestress conditions. In the case of the RG 6B dome, the external load is not affecting 

the minimum prestress level. A low prestress level is sufficient to obtain the appropriate 

distribution of forces in the elements. In turn, for the RG 6A dome, the load value affects the 
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minimum prestress level, the appropriate distribution of forces can be obtained only by 

introducing higher prestress. The RG 6A dome minimum prestress level is 150% and 1000% 

(for 1kN and 5kN load respectively) of the minimum prestress level of the RG 6B dome. The 

RG 6B dome can be considered as better solution. The increased number of elements (different 

type of upper section) results in the higher impact of the initial prestress level and easier control 

of the dome parameters.         

5.4.2. Static analysis of the realistic-scale dome 

In the case of realistic-scale dome, one variant of geometry is chosen. The modified Geiger 

dome, with upper section (type A), and six load-bearing girders is considered (MG 6A) (Fig. 

5.4d). The dome is 20 m wide and 3.5 m high (measuring from the level of support) (Fig. 5.29). 

The structure consists of 73 elements, i.e., 13 struts and 60 cables. The struts are designed as 

tubes CHS 127x5.6. Due to the different lengths, the struts were divided into three groups, i.e., 

six struts of 3.83 m length, six struts of 2.33 m length, and one strut of 1 m length, with the 

maximum load-bearing capacity of 𝑁𝑅𝑑 = 418 kN, 640 kN, and 741 kN, respectively. In turn, 

the cables are assumed to be made of “D42” with a maximum load-bearing capacity of 𝑁𝑅𝑑 =

504.4 kN. Two variants of load are considered. In the first case, the load was applied 

symmetrically (Fig. 5.30a) (G1), whereas in the second – asymmetrically (Fig. 5.30b) (G2). In 

both cases, the vertical (z-direction) forces (𝑃𝑧) and plane ones (𝑃𝑥𝑦) are assumed to be the 

nominal value of 1 kN (𝑃𝑥 = 𝑃𝑦 = 0.707 kN). The minimum prestress level for the dome is 

equal to 𝑆𝑚𝑖𝑛= 21 kN, whereas the maximum prestress level was assumed as S𝑚𝑎𝑥 = 190 kN. 

The maximum effort of structure is  𝑊𝑚𝑎𝑥  = 0.91.  

  

Fig. 5.29. Load-bearing girder of the realistic-scale Geiger dome 

 

 



5. Geiger domes 

 63 

 

a) b) 

  

Fig. 5.30. Scheme of the applied load of the realistic-scale Geiger dome: a) symmetrical (G1), b) 

asymmetrical (G2) 

The static analysis of the realistic-scale Geiger dome concerns the impact of the initial 

prestress level 𝑆 on the displacements 𝑞𝑥 and 𝑞𝑦 of the top node 1 (Fig. 5.29), maximum effort 

of structure 𝑊𝑚𝑎𝑥, and stiffness parameter 𝐺𝑆𝑃. 

Firstly, the displacements are presented (Fig. 5.31). For the symmetrical load (G1), the 

displacements 𝑞𝑥  and 𝑞𝑦 depend on the initial prestress level and additionally on the load 

variant. The displacements decrease as the initial prestress increases. However, in the case of 

the asymmetrical load (G2), the displacements are higher than in the case of a symmetrical load 

(G1). This type of load causes displacements consistent with the infinitesimal mechanisms. The 

conducted analyses show that the influence of nonlinearity is significant at low values of initial 

prestress. As prestressing forces increase, the differences between the calculations performed 

according to the second and third-order theory become smaller. However, in the case of the 

assumed low load values, results are similar.  

a) b) 

  

Fig. 5.31. Impact of initial prestress 𝑆 on the displacement: a) 𝑞𝑥, b) 𝑞𝑦 
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Next, the maximum effort of the structure (𝑊𝑚𝑎𝑥) and 𝐺𝑆𝑃 parameter (Fig. 5.32b) is 

calculated (Fig. 5.32a). Small nonlinearity can be noticed at the low initial prestress levels, due 

to a low external load. Nonetheless, the load type is not affecting considered parameters.   

a) b) 

  

Fig. 5.32. Impact of initial prestress 𝑆 on the: a) maximum effort of structure 𝑊𝑚𝑎𝑥, b) 𝐺𝑆𝑃 

parameter 

The external load nature (symmetrical or asymmetrical) has a great impact on the 

displacements of the structure. The asymmetrical load (G2) is consistent with the infinitesimal 

mechanism and causes bigger displacements than in the case of symmetrical load (G1). In turn, 

parameters such as maximum effort of structure or stiffness are not dependent on the load 

nature.  

5.4.3. Dynamic analysis 

The dynamic analysis of the Geiger domes includes the analysis of both natural and free 

frequencies of the structure. The assessment divided onto three parts that contain natural 

frequencies that correspond to the infinitesimal mechanisms (Example 1), additional natural 

frequencies that depend on the initial prestress (Example 2), and free frequencies (Example 3).   

Example 1  

Subject of the comparison: RG 𝑛𝑔A, RG 𝑛𝑔B, MG 𝑛𝑔A, MG 𝑛𝑔B domes (𝑛𝑔 = {6,8,10,12}) 

- natural frequencies correspond to the infinitesimal mechanisms 

Aim of the comparison: (1) How does the initial prestress level impact the natural frequencies 

corresponding to the infinitesimal mechanisms? (2) Whether the number of load-bearing girders 

impacts the natural frequencies corresponding to the infinitesimal mechanisms? (3) How does 
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the design solution (regular or modified, open or closed upper section) impact the dome 

behaviour?     

The dynamic analysis concerns the small-scale Geiger domes provided in section 5.4.1. 

The consideration includes domes with a different number of load-bearing girders (𝑛𝑔), i.e., 

𝑛𝑔 = {6,8,10,12}. It is commonly known that, in the case of tensegrity structures, the number 

of natural frequencies depending on the self-stress state is equal to a number of infinitesimal 

mechanisms (𝑛𝑚). The number of existing infinitesimal mechanisms of small-scale domes was 

determined in the section 5.3.2. Fig. 5.33 presents the influence of the initial prestress level on 

the first (𝑓1) and last (𝑓𝑛𝑚) natural frequency of considered domes. A zero prestress (𝑆 = 0) 

results in zero frequencies. However, after increasing the level of initial prestress, frequencies 

increase nonlinearly. The level of the first natural frequency 𝑓1 is similar for each considered 

dome 𝑓1 = 5.1 Hz ÷ 6.5 Hz for 𝑆𝑚𝑎𝑥. The smallest discrepancy between the first and last 

natural frequency at the maximum prestress level is noted for the MG 6A dome and equals 

around 7 Hz, thus, the biggest discrepancy is for the RG 12B dome – around 68 Hz. The natural 

frequencies that correspond to the infinitesimal mechanisms are characterized by high 

sensitivity to the changes in the initial prestress level. 

In the case of RG 𝑛𝑔A domes (Fig. 5.33a), the increasing number of load-bearing girders 

is not affecting the first natural frequency 𝑓1 and last natural frequency 𝑓𝑛𝑚. For MG 𝑛𝑔A 

(Fig. 5.33b), the situation is similar, however, a small discrepancy can be noted (around 0.5 ÷

2 Hz for the 𝑆𝑚𝑎𝑥 = 50 kN). In turn, for the regular and modified domes of type B (RG 𝑛𝑔B 

and MG 𝑛𝑔B) (Fig. 5.33c, d) an increase in the number of load-bearing girders results in the 

increase in the value of the last natural frequency 𝑓𝑛𝑚. Moreover, the last natural frequency 

𝑓𝑛𝑚 of the regular domes is at least 20% higher than the natural frequencies of the modified 

domes.   

It should be noted, that the forms of vibrations, in the case of 𝑆 = 0, realize the forms of 

the infinitesimal mechanisms. Although each form of vibration is unique, some natural 

frequencies are characterized by the same values. As an example, the MG 6A dome is 

characterized by eight different forms of vibrations (corresponding to the infinitesimal 

mechanism) (Fig. 5.34), but six different frequencies (𝑓2 = 𝑓3 and  𝑓5 = 𝑓6) (Table 5.10) (the 

frequencies that are characterized by the same values are grouped in gray). In the case of other 

domes, it is the same. 
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a) b) 

  
c) d) 

  

Fig. 5.33. Influence of the initial prestress 𝑆 on the natural frequency 𝑓 of: a) RG 𝑛𝑔A, b) MG 𝑛𝑔A, 

c) RG 𝑛𝑔B, d) MG 𝑛𝑔B 

Table 5.10. Values of natural frequencies corresponding to the mechanism of MG 6A dome 

𝐒 [kN]  
𝑓𝑖 [Hz] 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

0 0 0 0 0 0 0 0 0 

1 0.726 0.842 0.842 1.044 1.247 1.247 1.262 1.747 

5 1.632 1.883 1.883 2.335 2.788 2.788 2.821 3.906 

10 2.296 2.662 2.662 3.302 3.943 3.943 3.990 5.524 

20 3.247 3.764 3.764 4.670 5.575 5.575 5.463 7.813 

30 3.976 4.608 4.608 5.720 6.827 6.827 6.911 9.569 

40 4.591 5.319 5.319 6.604 7.882 7.882 7.980 11.049 

50 5.133 5.945 5.945 7.384 8.811 8.811 8.922 12.353 
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a) 
 

 

b) 
 

 
c)  

 

d)  

 
e)  

 

f)  

 
g)  

 

h)  

 

Fig. 5.34. Forms of vibrations for the MG 6A dome for frequency: a) 𝑓1, b) 𝑓2, c) 𝑓3, d) 𝑓4, e) 𝑓5,  

f) 𝑓6, g) 𝑓7, h) 𝑓8 
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Conclusion of the comparison: The natural frequencies corresponding to the infinitesimal 

mechanisms are characterized by a high sensitivity to the change in the initial prestress level. 

Additionally, the impact of the prestress is nonlinear. The number of load-bearing girders 

affects only the last natural frequency 𝑓𝑛𝑚 of the type B domes (open section), especially 

regular ones (RG 𝑛𝑔B). The first natural frequency 𝑓1 remains on the same level for each 

considered dome and is not affected by the number of load-bearing girders. 

Example 2  

Subject of the comparison: RG 𝑛𝑔A, RG 𝑛𝑔B, MG 𝑛𝑔A, MG 𝑛𝑔B domes (𝑛𝑔 = {6,8,10,12}) 

- additional natural frequencies dependent on the initial prestress 

Aim of the comparison: (1) Whether the initial prestress level impact the next natural 

frequencies that not correspond to the infinitesimal mechanism? (2) Whether the number of 

load-bearing girders impacts the natural frequencies that not correspond to the infinitesimal 

mechanisms? (3) How the design solution (regular or modified, open or close upper section) 

impacts the dome behaviour?     

As was stated earlier, the number of natural frequencies depending on the initial prestress 

level is equal to a number of the infinitesimal mechanisms (𝑓𝑛𝑚). Nevertheless, for the type A 

Geiger domes (RG 𝑛𝑔A and MG 𝑛𝑔A) it is different. In this case, the number of dependent 

frequencies 𝑓𝑡𝑜𝑡𝑎𝑙 is greater and depends on the number of girders (𝑛𝑔): 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑛𝑚 + 𝑓𝑎𝑑𝑑;       𝑓𝑎𝑑𝑑 = (𝑛𝑔 − 3) (5.3) 

In Fig. 5.35 and Fig. 5.36 the last frequency corresponding to the infinitesimal mechanism 

(𝑓𝑛𝑚), the next additional dependent on the prestress (𝑓𝑎𝑑𝑑) and the first independent of 

prestress (𝑓𝑡𝑜𝑡𝑎𝑙+1) ones are shown. In the absence of prestress (𝑆 = 0) the frequency 𝑓𝑛𝑚 is 

equal to zero, and after introducing prestress 𝑆  the values 𝑓𝑛𝑚 increase in nonlinear way. 

Whereas, the behaviour of additional frequency depended on prestress (𝑓𝑎𝑑𝑑) is different. In 

the absence of prestress 𝑓𝑎𝑑𝑑  is not zero and dependence on the prestress is almost linear. The 

smallest dependency on the initial prestress level is noted for the 𝑓19 = 𝑓20 of the RG 6A 

dome, the difference between 𝑆 = 0 and 𝑆 = 50 kN is 5.7 Hz. The biggest dependency, thus, 

is for 𝑓39 of the RG 12A dome, the difference is 16.1 Hz. The additional natural frequencies 

characterized by a little sensitivity to the change in the initial prestress level, comparing to the 

natural frequencies, corresponded to the infinitesimal mechanism. It should be noted, the 
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number of frequencies 𝑓𝑎𝑑𝑑 , and the sensitivity on the initial prestress changes, depends on the 

number of girders. More sensitive to the changes are higher frequencies. 

In turn, the value of the first frequency independent of prestress (𝑓𝑡𝑜𝑡𝑎𝑙+1) for all Geiger 

domes type A does not depend neither on the number of loads-bearing girders nor initial 

prestress level. The value varies 𝑓𝑡𝑜𝑡𝑎𝑙+1 = 42.7 Hz ÷ 44.7 Hz.  

a)  b)  

  
c)  d)  

 
 

Fig. 5.35. Influence of the initial prestress 𝑆 on the natural frequencies 𝑓𝑛𝑚, 𝑓𝑎𝑑𝑑, and 𝑓𝑡𝑜𝑡𝑎𝑙+1 of: a) 

RG 6A, b) RG 8A, c) RG 10A, d) RG 12A 

In the case of the domes type B, the natural frequencies that do not correspond to the 

infinitesimal mechanism are independent of the initial prestress level. It means that, 

independent of the number of loads-bearing girders, the number of dependent frequencies is 

equal: 
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𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑛𝑚       (5.4) 

For all Geiger domes type B, the value of the first frequency independent of prestress are not 

depended neither on the number of loads-bearing girders nor the initial prestress level, and the 

range equals 𝑓𝑡𝑜𝑡𝑎𝑙+1 = 40.9 Hz ÷ 42.2 Hz.      

a)  b)  

 
 

c)  d)  

 
 

Fig. 5.36. Influence of the initial prestress 𝑆 on the natural frequencies 𝑓𝑛𝑚, 𝑓𝑎𝑑𝑑, and 𝑓𝑡𝑜𝑡𝑎𝑙+1 of: a) 

MG 6A, b) MG 8A, c) MG 10A, d) MG 12A 

Conclusion of the comparison: The additional natural frequencies that depend on the initial 

prestress level occur only in the case of type A domes and highly depend on the number of 

load-bearing girders. However, in comparison to the natural frequencies corresponding to the 
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infinitesimal mechanisms, they are characterized by little sensitivity to the initial prestress level 

and the impact of prestress is linear. In turn, in the case of type B domes, the number of natural 

frequencies depended on the initial prestress level equal to the number of infinitesimal 

mechanisms.   

Example 3  

Subject of the comparison: RG 6A, RG 6B, MG 6A, MG 6B domes - free frequencies 

Aim of the comparison: (1) How does the initial prestress level impact free frequencies? (2) 

How do the value and position of load impact free frequencies?  

The analysis of free frequencies of the structure with different variants (value and position) 

of load was performed. Tables 5.10-5.13 contain values of the first 𝑓1(𝑃) and last 𝑓𝑛𝑚(𝑃) 

frequency that correspond to the infinitesimal mechanisms. The increasing of the external load 

results in the decreasing of the minimum prestress level 𝑆𝑚𝑖𝑛 value, except for the RG 6B dome 

(Table 5.11). The behaviour of this dome is unique, and the 𝑆𝑚𝑖𝑛 value do not depend on the 

load value nor the position and always equals 2 kN. In other cases, the increase of the load is 

significantly affecting the values of the 𝑆𝑚𝑖𝑛. In the case of the domes type A (RG 6A, MG 

6A), the 𝑆𝑚𝑖𝑛 value decreases when the load position changes from the 𝐏(1) to the 𝐏(3). For 

example, in the case of load P = 5 kN, the minimum prestress level changed from 8 kN to 24 

kN for RG 6A dome (Table 5.12), and from 11 kN to 36 kN for MG 6A dome ( Table 5.13). 

For the MG 6B dome, the situation is the opposite. The minimum initial prestress level is 

changing from 41 kN to 2 kN for MG 6M dome (Table 5.14).  

Table 5.11. Natural 𝑓𝑖(0) and free 𝑓𝑖(𝑃) frequencies [Hz] for the dome RG 6B 

𝑆 

[kN] 
𝑓1(0) 

𝑓1(𝑃) 

𝑓31(0) 

𝑓31(𝑃) 

𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 

0 0.00       0.00       

1 0.86       5.45       

2 1.22 1.73 2.75 1.82 2.78 1.69 2.57 7.71 10.81 17.04 11.30 17.60 10.88 17.16 

5 1.92 2.08 2.90 2.14 2.97 2.06 2.75 12.18 13.04 17.99 13.38 18.57 13.19 18.20 

10 2.72 2.74 3.20 2.76 3.29 2.74 3.10 16.69 17.23 19.91 17.34 20.45 17.41 20.26 

20 3.85 3.84 3.95 3.84 4.01 3.84 3.90 23.06 24.21 24.64 24.22 24.94 24.53 25.16 

30 4.72 4.70 4.71 4.70 4.74 4.70 4.69 28.02 29.68 29.51 29.68 39.63 29.81 30.04 

40 5.44 5.43 5.41 5.43 5.43 5.43 5.40 32.23 34.31 33.97 34.31 34.02 34.42 34.46 

50 6.09 6.08 6.05 6.08 6.06 6.08 6.04 35.94 38.39 38.00 38.38 38.01 38.49 38.46 
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Table 5.12. Natural 𝑓𝑖(0) and free 𝑓𝑖(𝑃) frequencies [Hz] for the dome RG 6A 

𝑆 

[kN] 
𝑓1(0) 

𝑓1(𝑃) 

𝑓18(0) 

𝑓18(𝑃) 

𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 

0 0.00       0.00       

1 0.86       2.31       

2 1.22 1.15      3.27 3.17      

5 1.93 1.89  2.07  1.68  5.17 5.10  5.58  5.81  

8 2.45 2.41 2.23 2.48  2.33  6.54 6.49 6.31 6.68  6.84  

10 2.73 2.71 2.57 2.75  2.66  7.32 7.27 7.10 7.38  7.51  

20 3.87 3.85 3.76 3.86  3.84  10.35 10.31 10.18 10.33  10.38  

22 4.06 4.04 3.96 4.04 4.10 4.03  10.85 10.82 10.69 10.83 11.08 10.88  

24 4.24 4.22 4.14 4.22 4.26 4.21 3.78 11.34 11.30 11.18 11.32 11.50 11.35 12.00 

30 4.74 4.72 4.65 4.72 4.72 4.72 4.46 12.67 12.64 12.53 12.65 12.73 12.67 13.10 

40 5.47 5.45 5.40 5.46 5.43 5.45 5.31 14.63 14.61 14.51 14.61 14.61 14.63 14.84 

50 6.11 6.10 6.05 6.10 6.07 6.10 6.01 16.36 16.34 16.25 16.34 16.31 16.35 16.46 

 

Table 5.13. Natural 𝑓𝑖(0) and free 𝑓𝑖(𝑃) frequencies [Hz] for the dome MG 6A 

𝑆 

[kN] 
𝑓1(0) 

𝑓1(𝑃) 

𝑓8(0) 

𝑓8(𝑃) 

𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 

0 0.00       0.00       

1 0.73       1.75       

3 1.26 1.19      3.03 3.02      

5 1.62 1.56      3.91 3.90      

8 2.05 1.99  2.08    4.95 4.94  5.27    

10 2.30 2.26  2.31    5.52 5.52  5.73    

11 2.41 2.35 2.22 2.39    5.79 5.79 5.79 5.95    

12 2.51 2.46 2.34 2.49  2.51  6.05 6.05 6.05 6.17  6.06  

20 3.25 3.22 3.12 3.23  3.23  7.81 7.81 7.80 7.85  7.80  

30 3.98 3.96 3.88 3.96  3.96  9.57 9.56 9.55 9.58  9.56  

34 4.23 4.22 4.19 4.20 4.20 4.23  10.19 10.18 10.17 10.22 10.44 10.25  

36 4.36 4.35 4.33 4.32 4.32 4.36 4.31 10.48 10.48 10.45 10.52 10.71 10.56 10.47 

40 4.59 4.58 4.51 4.58 4.55 4.58 4.54 11.05 11.05 11.04 11.05 11.22 11.04 11.03 

50 5.13 5.12 5.06 5.12 5.08 5.12 5.09 12.35 12.35 12.34 12.35 12.45 12.34 12.32 
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Table 5.14. Natural 𝑓𝑖(0) and free 𝑓𝑖(𝑃) frequencies [Hz] for the dome MG 6B 

𝑆 

[kN] 
𝑓1(0) 

𝑓1(𝑃) 

𝑓21(0) 

𝑓21(𝑃) 

𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 

0 0.00       0.00       

1 0.72       4.21       

2 1.02     1.41 2.16 5.96     8.64 13.21 

5 1.61     1.76 2.33 9.42     10.56 14.20 

10 2.28   2.32  2.29 2.61 13.32   13.56  13.52 15.87 

14 2.70 2.69  2.72  2.66 2.92 15.77 18.91  15.71  15.66 17.45 

20 3.23 3.22  3.22  3.13 3.28 18.84 20.72  18.77  18.85 19.61 

26 3.68 3.67  3.55 3.72 3.69 3.68 21.48 22.67  21.33 21.65 21.47 21.65 

30 3.96 3.94  3.94 3.97 3.94 3.94 23.08 23.92  22.97 23.08 23.06 23.33 

40 4.57 4.55  4.55 4.54 4.56 4.53 26.65 27.06  26.54 26.42 26.63 26.72 

41 4.62 4.61 4.57 4.61 4.58 4.69 4.59 26.98 27.31 32.27 26.97 26.79 27.16 26.91 

50 5.11 5.09 5.06 5.09 5.07 5.10 5.06 29.79 30.01 33.81 29.69 29.47 29.77 29.79 

 

The biggest discrepancy between natural and free frequencies is noticeable at the low 

levels of the initial prestress, especially for the last frequency corresponding to the mechanism. 

In the case of RG 6B dome, the difference between natural and free frequencies is the biggest, 

up to 55% (in the case 𝐏(3) = 5 kN and 𝑆 = 2 kN), because of the lowest 𝑆𝑚𝑖𝑛 value for each 

load case. The situation is similar for MG 6B dome in case of the same load case and prestress 

level. Nevertheless, the increasing of the initial prestress level results in the convergence of the 

values of natural and free frequencies. In the case of the prestress level 𝑆 = 50 kN, the 

difference in the first frequency is around 1.6% and 1%, and about 0.8% and 11% for the last 

frequency, for the dome type A and B respectively. 

Conclusion of the comparison: The free frequencies of the dome are highly dependent on the 

initial prestress level. The dependency on the load value and position is significant only in low 

levels of initial prestress, an increase in the initial prestress level results in a decrease in the 

sensitivity of the free frequencies to the load.      

5.4.4. Dynamic stability analysis 

The dynamic stability analysis of a small-scale six-girder Geiger domes is considered (see 

section 5.4.1). Particularly, the influence of the initial prestress level on the shape and range of 

unstable regions is analyzed. A few examples are provided in order to compare the behaviour 
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of different domes under the periodic load. Firstly, the RG 6A and MG 6A domes are compared 

(Example 1), then the RG 6A and RG 6B (Example 2), and the RG 6B with MG 6B domes 

(Example 3) are considered. The consideration is concluded with summarized results for all 

domes (Example 4).       

Example 1  

Subject of the comparison: RG 6A (Fig. 5.37a) and MG 6A (Fig. 5.37b) domes – unstable 

regions 

Aim of the comparison: (1) Does the initial prestress level affect unstable regions for the type 

A domes? (2) Does the structure modification of type A domes (Fig. 5.37b) affect unstable 

regions? 

a)                              RG 6A b)                                MG 6A 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 5 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 22 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 8 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 34 kN 

  

Fig. 5.37. External load application in the case of position 𝐏(2) for: a) RG 6A, b) MG 6A  

The first example concerns influence of the initial prestress level on the unstable regions 

of the RG 6A and MG 6A domes. The load position 𝐏(2) is considered in order to avoid the 

symmetrically distributed external load. The selected instability regions are presented for three 

levels of initial prestress, and two load variants P = 1 kN (Table 5.15) and P = 5 kN (Table 

5.16). The results indicate quite similar behaviour of regular and modified domes. In the case 

of first load variant (P = 1 kN) (Table 5.15) the domes are characterized by the similar 𝑆𝑚𝑖𝑛 

level, and the impact of the initial prestress level on the limits of instability regions is 

comparable. The biggest instability regions are noted for the last resonant frequency 

corresponded to the infinitesimal mechanism (𝜂18 for RG 6A, and 𝜂8 for MG 6A). For both 

domes, the resonant frequencies increase with an increase of the initial prestress level, and the 
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instability regions narrows. Unlike in the case of load variant P = 5 kN, for P = 1 kN the 

instability regions occurred only for 𝑆𝑚𝑖𝑛 level of initial prestress, however, not for the all-

selected frequencies (in case of modified dome). The increase of load value has great impact 

on the increase of resonant frequencies of the domes. The resonant frequencies for the P = 5 kN 

are two times the resonant frequencies for P = 1 kN.          

      Table 5.15. Limits of chosen four main instability regions of the RG 6A and MG 6A domes for 

P = 1 kN (R – RG 6A dome, M – MG 6A dome) 

 𝑆𝑚𝑖𝑛 [kN] 𝑆 = 15 kN 𝑆 = 25 kN 

R 

   

M 
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  Table 5.16. Limits of chosen four main instability regions of the RG 6A and MG 6A domes for P =
5 kN (R – RG 6A dome, M – MG 6A dome) 

 𝑆𝑚𝑖𝑛 [kN] 𝑆 = 40 kN 𝑆𝑚𝑎𝑥 = 50 kN 

R 

   

M 

   

 

As in the case of natural frequencies, Geiger domes type A characterized by additional 

resonant frequencies dependent on the initial prestress level (see section 5.4.3). The RG 6A and 

MG 6A domes are characterized by three additional resonant frequencies, i.e., 𝜂19, 𝜂20, 𝜂21, 

and 𝜂9, 𝜂10, 𝜂11 respectively (Table 5.17). The additional frequencies do not depend on the 

pulsatility index 𝜐, the boundaries of instability regions coincide. Nonetheless, the regular dome 

is more sensitive to change in the initial prestress level. The relative increase (RI) is about 

36.69% - 41.74%, while for the modified dome it is around 32.58% - 37.47% (in the case 

P = 1 kN). The increase in the external load led to a decrease in the influence of the initial 

prestress. The RI is even three times smaller in the case of load P = 5 kN than for the P = 1 kN. 
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  Table 5.17. Resonant frequencies of the RG 6A and MG 6A domes in the case of load position 𝐏(2) 

 RG 6A MG 6A 

Resonant frequency 𝜂(𝜐 = 0 ÷ 0.75) = const. 

𝜂19 𝜂20 𝜂21 𝜂22 𝜂9 𝜂10 𝜂11 𝜂12 

𝐏 = 𝟏 𝐤𝐍 

𝑆𝑚𝑖𝑛 26.93 26.93 29.06 88.38 25.29 25.29 28.05 85.19 

𝑆𝑚𝑎𝑥 36.81 36.82 41.19 88.83 33.53 33.54 38.56 85.52 

RI* 36.69% 36.72% 41.74% 0.51% 32.58% 32.62% 37.47% 0.39% 

𝐏 = 𝟓 𝐤𝐍 

𝑆𝑚𝑖𝑛 31.24 31.24 34.44 88.56 30.76 30.78 35.09 85.39 

𝑆𝑚𝑎𝑥 36.85 36.89 41.27 88.83 33.58 33.61 38.65 85.52 

RI* 17.96% 18.09% 19.83% 0.31% 9.17% 9.19% 10.15% 0.15% 

RI* – relative increase: [(𝜂(Smin ) − 𝜂(S𝑚𝑎𝑥))/𝜂(S𝑚𝑖𝑛) ∙ 100%] 

 

Fig. 5.38 presents the impact of the initial prestress level on the range and distribution of 

instability regions. The change is measured by the nondimensional parameter 𝜆. For each dome, 

the range of instability regions is equal to 1 for 𝑆𝑚𝑖𝑛 level. In the case of the RG 6A dome (Fig. 

5.38 a, b), the increase in the initial prestress level has greater impact on the areas than in the 

case of MG 6A dome (Fig. 5.38 c, d). For the P = 1 kN and 𝑆 = 15 kN, the areas are smaller 

by about 95% and 68%, for RG 6A and MG 6A respectively (the changes are measured taking 

into account average value for four regions). The situation is similar for P = 5 kN and 𝑆 =

40 kN, the average decrease is about 86% and 30%, for RG 6A and MG 6A respectively. In the 

case of the RG 6A dome, changes in the range of the second unstable region corresponded to 

the sixth resonant frequency 𝜂6 should be noted. The increase of the initial prestress level results 

in the decrease of the area (up to 90% - 100%), and then in the significant increase. For the MG 

6A dome, the behaviour of the first unstable region corresponded to the first resonant frequency 

𝜂1 is comparable.  
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a) b) 

  
c) d) 

  

Fig. 5.38. Influence of the initial prestress level 𝑆 on the range of unstable regions of: a) RG 6A for 

P = 1 kN, b) RG 6A for P = 5 kN, c) MG 6A for P = 1 kN, d) MG 6A for P = 5 kN 

Conclusion of the comparison: In the case of type A domes, the probability of the occurrence 

of the unstable regions is low. Only in the case of 𝑆𝑚𝑖𝑛 and low initial prestress level, there are 

unstable regions, however, the areas are small. Comparing the behaviour of regular and 

modified Geiger domes type A, it was noted that introducing additional circumferential cables 

is not affect the distribution of unstable regions. It means, the introducing of the additional 

cables is not necessary. Nevertheless, in the case of a regular dome, an initial prestress has a 

greater impact on the area of unstable regions, and the structure is characterized by higher 

resonant frequencies.  
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Example 2  

Subject of the comparison: RG 6A (Fig. 5.39a) and RG 6B (Fig. 5.39b) domes – unstable 

regions 

Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of 

different dome types (closed (Fig. 5.39a) or open (Fig. 5.39b) upper section)? (2) Does the 

structure modification affect unstable regions in the case of different dome types (closed (Fig. 

5.39a) or open (Fig. 5.39b) upper section)? 

a)                              RG 6A b)                                RG 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 5 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 24 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

  

Fig. 5.39. External load application in the case of position 𝐏(3) for: a) RG 6A, b) RG 6B  

The second example concerns influence of the initial prestress level on the unstable regions 

of the RG 6A and RG 6B domes (difference is in the upper section). The dynamic behaviour of 

domes compared in the case of load position 𝐏(3) for P = 1 kN (Table 5.18) and P = 5 kN 

(Table 5.19). The change in limits of instability regions is presented for three levels of initial 

prestress. In the case of low load value (Table 5.18), the 𝑆𝑚𝑖𝑛 is on the similar level, however, 

the instability regions distribution is different. In the case of RG 6B dome, the initial prestress 

has a greater impact on the resonant frequencies and dome is characterized by the widest 

instability region corresponding to the last resonant frequency 𝜂31. Nevertheless, the 

introducing of higher levels of initial prestress causes the coinciding of the limits of instability 

regions, and resonant frequencies 𝜂 do not depend on the pulsatility index  𝜐, and the risk of the 

excitation of unstable motion decreases. The increase of external load results in the increasing 

𝑆𝑚𝑖𝑛 value for the RG 6A dome, and widening of the limits of instability regions for both 

structures (Table 5.19). In the case of RG 6B dome, instability regions occur for each considered 

resonant frequency, and only for first (𝜂1) and last (𝜂18) for RG 6A dome. The increase of the 
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initial prestress level results in the narrowing of located regions, nonetheless, small dependency 

of resonant frequencies 𝜂 on the pulsatility index  𝜐 is noticed at high levels of prestress.  

In the case of the domes type B, the number of resonant frequencies dependent on the 

initial prestress level is equal to the number of infinitesimal mechanisms. The additional 

frequencies do not depend neither on the pulsatility index 𝜐, nor the initial prestress 𝑆 (Table 

5.20). The relative increase (RI) is about 0.53% - 0.55%, similarly to the independent frequency 

of the RG 6A dome (𝜂22).   

Table 5.18. Limits of chosen four main instability regions of the RG 6A and RG 6B domes for P =
1 kN (A – RG 6A dome, B – RG 6B dome) 

 𝑆𝑚𝑖𝑛 [kN] 𝑆 = 15 kN 𝑆 = 25 kN 

A 

   

B 
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Table 5.19. Limits of chosen four main instability regions of the RG 6A and RG 6B domes for P =
5 kN (A – RG 6A dome, B – RG 6B dome) 

 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 + 10 kN 𝑆𝑚𝑖𝑛 + 20 kN 

A 

   

B 

   

 

      Table 5.20. Resonant frequencies of the RG 6A and RG 6B domes in the case of load position 

𝐏(3) 

 

RG 6A RG 6B 

Resonant frequency 𝜂(𝜐 = 0 ÷ 0.75) = const. 
𝜂19 𝜂20 𝜂21 𝜂22 𝜂32 𝜂33 

𝐏 = 𝟏 𝐤𝐍 

𝑆𝑚𝑖𝑛 26.79 26.90 28.94 88.38 83.77 180.25 

𝑆𝑚𝑎𝑥 36.79 36.83 41.18 88.83 84.21 181.25 

RI* 37.33% 36.91% 42.29% 0.51% 0.53% 0.55% 

𝐏 = 𝟓 𝐤𝐍 

𝑆𝑚𝑖𝑛 31.36 31.69 34.77 88.57 83.83 180.38 

𝑆𝑚𝑎𝑥 36.72 36.93 41.20 88.83 84.21 181.25 

RI* 17.09% 16.54% 18.49% 0.29% 0.45% 0.48% 

            RI* – relative increase: [(𝜂(Smin ) − 𝜂(S𝑚𝑎𝑥))/𝜂(S𝑚𝑖𝑛) ∙ 100%] 
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Next, the impact of the initial prestress level on the range and distribution of instability 

regions is compared (Fig. 5.40). For the P = 1 kN and 𝑆 = 15 kN, the areas are smaller by 

about 80% and 96%, for RG 6A and RG 6B respectively (the changes are measured taking into 

account average value for four regions). The increase in the initial prestress level has greater 

impact on the areas of instability regions in the case of RG 6B dome. After introducing the 

increased external load P = 5 kN, the increase of the initial prestress level nonlinearly decreases 

the ranges of regions of RG 6B dome. In the case 𝑆 = 35 kN, the areas are smaller by about 

44% and 95%, for RG 6A and RG 6B respectively.     

 a) b) 

  
c) d) 

  

Fig. 5.40. Influence of the initial prestress level 𝑆 on the range of unstable regions of: a) RG 6A for 

P = 1 kN, b) RG 6A for P = 5 kN, c) RG 6B for P = 1 kN, d) RG 6B for P = 5 kN 

Conclusion of the comparison: The dynamic stability analysis of regular types A (RG 6A) and 

B (RG 6B) domes shows type B that dome (RG 6B) is characterized by bigger unstable regions 

and higher resonant frequencies. The risk of unstable excitation vibrations is much higher at 

low initial prestress levels. Nevertheless, introducing the higher prestress results in narrowing 
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the unstable regions of both domes and decreases the risk of the excitation of motion with 

increasing amplitudes.   

Example 3  

Subject of the comparison: RG 6B (Fig. 5.41a) and MG 6B (Fig. 5.41b) domes – unstable 

regions  

Aim of the comparison: (1) Does the initial prestress level affect unstable regions for the type 

B domes? (2) Does the structure modification of type B domes (Fig. 5.41b) affect unstable 

regions?  

     a)                              RG 6B b)                                MG 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 2 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 14 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 41 kN 

  

Fig. 5.41. External load application in the case of position 𝐏(1) for: a) RG 6B, b) MG 6B  

The third example aims to compare the dynamic response of the RG 6B and MG 6B domes. 

The dynamic stability analysis performed in the case of load position P(1) for P = 1 kN (Table 

5.21) and P = 5 kN (Table 5.22). The limits of instability regions are presented for three levels 

of initial prestress. Even the low external load (P = 1 kN) cause the appearance of instability 

regions for considered domes. Nonetheless, in the case of the regular dome, instability regions 

occur for each considered resonant frequency, and for the modified dome – only for the last 

resonant frequency (𝜂21). It is worth to mention, that increasing of initial prestress by 10 kN 

resulted in complete narrowing of limit of instability regions of regular dome. For the modified 

one, the increasing resulted in the reduction of instability region for the last resonant frequency 

(𝜂21) and increased the limits of region for third considered resonant frequency (𝜂14). With 

the higher external load, the situation is similar. However, in the case of modified dome, the 

increasing of the initial prestress to 𝑆𝑚𝑎𝑥 = 50 kN did not cause the narrowing of the instability 
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region, and the risk of the excitation of motion with increasing amplitudes is still high. The 

situation is opposite for the regular dome. Comparing the resonant frequencies of the RG 6B 

and MG 6B for the same initial prestress level, the resonant frequencies of the regular dome are 

higher.   

Domes of type B are characterized by greater instability regions compared to type A. 

Additionally, the instability regions correspond not only to the last resonant frequency. Fig. 

5.42 presents instability regions corresponding to all resonant frequencies of the regular and 

modified dome in the case of the minimal prestress level, and 𝐏(3) for P = 5 kN (in order to 

compare the behaviour on the same prestress level). Limits of most regions are concentrated in 

one area, creating a higher risk of occurring excitation vibrations.   

Table 5.21. Limits of chosen four main instability regions of the RG 6B and MG 6B domes for P =
1 kN (R – RG 6B dome, M – MG 6B dome) 

 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 + 10 kN 𝑆𝑚𝑖𝑛 + 20 kN 

R 

   

M 
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Table 5.22. Limits of chosen four main instability regions of the RG 6B and MG 6B domes for P =
5 kN (R – RG 6B dome, M – MG 6B dome) 

 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 + 5 kN 𝑆𝑚𝑖𝑛 + 10 kN 

R 

   

M 

   

a) b) 

  

Fig. 5.42. Limits of all instability regions for the load P = 5 kN of: a) RG 6B, b) MG 6B 
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The impact of the initial prestress level on the range and distribution of instability regions 

is also compared (Fig. 5.43). In the case of regular dome, for P = 1 kN and 𝑆 = 15 kN, the area 

of instability regions is decreased by 98% (the changes are measured taking into account the 

average value for four regions). In the situation P = 5 kN and 𝑆 = 15 kN, the decrease is about 

54%. For the modified dome and P = 1 kN, the increasing of the initial prestress level results 

in the decreasing areas that correspond to the frequencies 𝜂7 and 𝜂21, thus increasing for 𝜂1 

and 𝜂14. Similarly, is in the case of higher external load.     

a) b) 

  
c) d) 

  

Fig. 5.43. Influence of the initial prestress level 𝑆 on the range of unstable regions of: a) RG 6B P =
1 kN, b) RG 6B P = 5 kN, c) MG 6B P = 1 kN, d) MG 6B P = 5 kN 

Conclusion of the comparison: Comparing the regular and modified Geiger domes, it was noted 

that modified domes are characterized by wider unstable regions. The increase of the load 

causes the lower impact of the initial prestress on the distribution of unstable regions in the case 

of the modified dome (MG 6B). Although the regular dome (RG 6B) is characterized by higher 
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resonant frequencies, the initial prestress has a greater impact on the area of unstable regions. 

In conclusion, the regular dome (RG 6B) is considered as more stable.  

Example 4  

Subject of the comparison: RG 6A, RG 6B, MG 6A, MG 6B – unstable regions 

Aim of the comparison: (1) How do the load value and position affect the distribution of 

unstable regions? (2) For which dome the probability of the unstable regions is least likely to 

occur? (3) What is the most optimal recommended initial prestress level?  

The summarized results present the distribution of instability regions that correspond to 

the last resonant frequency for each dome, in the case of different load situations (Fig. 5.44). 

The load is equal to 1 kN and 5 kN, whereas different load positions are defined as: 1,2, or 3. 

For example, in the charts the caption “RA 1(3)” stands for regular dome type A loaded with 

force 1 kN applied in position 3. The results are presented for the 𝑆𝑚𝑖𝑛 level of prestress, in 

order to compare the distribution of widest regions. In the case of the domes type A (Fig. 5.44a, 

c), the limits of instability regions coincide, and resonant frequencies 𝜂 do not depend on the 

pulsatility index  𝜐, the risk of the excitation of unstable motion is low. Additionally, the 

increase in the external load causes an increase in the resonant frequencies. For the regular 

dome type B (Fig. 5.44b), the limits of instability regions are significantly wider and expand 

with higher external load. The position of the applied load in not affect the distribution of limits. 

The modified dome type B (Fig. 5.44d) is characterized by different behaviour compared to 

other domes. The distribution of instability regions is affected both by load value and position. 

The widest regions are in the case of load position 𝐏(1), thus the narrowest in the case of load 

position 𝐏(2).   

Next, the influence of the initial prestress level on the areas of the unstable regions is 

studied (Fig. 5.45). In the case of regular type A dome (Fig. 5.45a), the impact of prestress can 

be noticed only for P = 5 kN in the case of load position 𝐏(2) (RA 5(2)) and 𝐏(3) (RA 5(3)). In 

turn, in the case of the modified type A dome (Fig. 5.45c) only for P = 5 kN in the case of load 

position 𝐏(2) (MA 5(2)). The impact of prestress on areas of domes type B is nonlinear, on the 

other hand (Fig. 5.45b, d). The nonlinearity increases with the increasing of external load. 

Nonetheless, the influence of the initial prestress level is significantly smaller if 𝑆 > 30 kN.  

In the case of type B domes and load P = 1 kN, the probability of occurrence of unstable 

regions is low. However, the situation is the opposite in the case of load P = 5 kN. The size of 
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unstable regions is comparable for different load positions for regular type B dome (RG B). On 

the other hand, the size of unstable regions of modified type B dome depends on load value and 

position, and can vary.   

a) b) 

  
c) d) 

  

Fig. 5.44. Influence of the initial prestress level 𝑆 on the range of last unstable region of: a) RG 6A, 

b) RG 6B, c) MG 6A, d) MG 6B 
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a) b) 

  
c) d) 

  

Fig. 5.45. Influence of the initial prestress level 𝑆 on the area of unstable region 𝐴𝜂: a) RG 6A, b) 

RG 6B, c) MG 6A, d) MG 6B  

Conclusion of the comparison: The load value and position have no effect in the case of the 

MG 6A dome. The situation is similar for the RG 6A dome. Both structures are characterized 

by narrow unstable regions. In turn, it is different in the case of type B domes. For the regular 

type B dome, the load value affects the unstable regions. Wherein, the bigger probability of the 

unstable regions to occur is in the case of a bigger load and lower initial prestress level (from 

𝑆 = 0 to 𝑆 = 30 kN), and the unstable regions are the same regardless the load position. In turn, 

the unstable regions of the modified type B dome depend both on the value and position of the 

load. It should be noted, that in the case of modified type B, load position 𝐏(1), and force 5 kN 

(MB 5(1)), the probability of the occurrence of the unstable regions is high and not depending 

on the initial prestress level. The probability of the occurrence of the unstable regions is getting 

smaller with an increasing of the initial prestress level (for each dome, except example MB 

5(1)). The most optimal recommended initial prestress level is above 𝑆 = 25 kN.      
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5.5. Summary 

The behaviour of the Geiger dome can be controlled by adjusting the initial prestress level. 

The structure’s response to the external load conditions highly depends on the dome type. The 

impact of the load is the most significant at low values of the initial prestress. The Geiger dome 

is more susceptible to the asymmetrical load, which causes displacements consistent with 

infinitesimal mechanisms. In the case of a symmetrical load, the displacements are smaller and 

insensitive to the prestress. The static analysis results that additional circumferential cables in 

the structure do not improve stiffness nor reduce displacements. Thus, the regular layout is 

considered as a better solution due advantage related to the weight of the structure. Comparing 

the differences in the upper sections, the regular dome with an open upper section (RG 6B) is 

characterized by the lowest level of minimum prestress, higher dependency on the initial 

prestress level adjustment, and higher ability to control the static parameters.  

In the case of the dynamic analysis, the natural frequencies level of the type A domes (RG 

𝑛𝑔A and MG 𝑛𝑔A domes) were not related to the number of load-bearing girders of the 

structure. Additionally, only these types of structures were characterized by the additional 

natural frequencies depending on the initial prestress level, unlike the type B domes (RG 𝑛𝑔B 

and MG 𝑛𝑔B). Comparing the free frequencies of the considered structures, the biggest 

discrepancy remains at the low levels of the initial prestress. The biggest discrepancy between 

natural and free frequency was noticed in the case of RG 6B dome (up to 55%). In the case of 

this type of dome, the same level of minimum prestress occurs despite the load value or position. 

Nonetheless, for each considered dome, at the maximum prestress level 𝑆 = 50 kN the values 

of the natural and free frequencies were comparable (the discrepancy up to 11%). 

The dynamic stability analysis showed that the type B domes (RG 6B and MG 6B) are 

characterized by wider unstable regions in comparison to type A domes. In the case of the RG 

6A and MG 6A domes, the instability regions occur only at the low values of the initial 

prestress, and get completely narrow with its increase. In turn, for the RG 6B and MG 6B 

domes, the impact of the initial prestress is lower. The number of unstable regions depends on 

the number of infinitesimal mechanisms. The type B domes characterized by the higher number 

of infinitesimal mechanisms, thus higher number of unstable regions. Additionally, they are 

concentrated close to each other, and some of them coincide, which results in a higher risk of 

occurring excitation vibrations. The MG 6B dome is the most sensitive to the change in the 

resonant frequencies, whereas the MG 6A dome is the least sensitive. It means, the additional 
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circumferential cables (MG 6B) introduced a negative impact on the dynamic stability of type 

B domes.  

The conducted analyses proved that the most optimum solution to be considered is that the 

RG 6B dome, which is characterized by the lowest minimum prestress level, and unstable 

regions depend on the load value only. It is worth to mention, that the RG 6B dome was patented 

by Geiger [115].
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6. Levy domes 

6.1. Introduction 

Shortly after the first tensegrity dome appeared, Matthys Levy presented a second design. 

In 1992, Levy proposed the project of a Georgia Dome in a quasi-linear shape for the Atlanta 

Olympic Games [139]. Unlike the Geiger dome, Levy’s dome was a triangular dome in which 

cables and struts were not in the same plane. The Georgia Dome was called the first Hypar-

Tensegrity Dome [193]. The structure with a 233.5 m span, consisted of a triangulated network 

of cables attached at strut nodes (Fig. 6.1). The characteristic design of Georgia Dome generated 

a lot of interest in the scientific world. The analysis of this structure was the main topic of 

different research [76, 140, 194].              

a) b) 

  

c) 

 

Fig. 6.1. Design of a Georgia dome [195]: a) 3D view, b) plan view, c) load-bearing girder 

The original Levy’s structure was modified by different researchers in order to perform the 

analysis of a new form of cable-strut dome. The shape was simplified to the regular dome-like 

structure and the upper section was presented in the form of a single strut or an open hoop, 

retaining the original triangulated network of cables (Fig. 6.1).    
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a) b) 

  
c) d) 

 

 

Fig. 6.2. Design transformations of Levy dome: a) shape presented by [85], b) shape presented by 

[196], c) shape presented by [197], d) shape presented by [198]  

Due to complex geometry and statically indeterminacy, the main challenge in the analysis 

of the Levy dome is a calculation of the correct force distribution in the elements. A lot of 

research focused on this problem and several solutions were introduced. Dong et al. presented 

the nodal equilibrium equations-based method [199], the method based on the linear adjustment 

theory was proposed by Zhang et al. [196], as well as the DSVD (Double Singular Value 

Decomposition) method by Yuan et al. [180], and others [168, 181, 200, 201]. Further research 

was concerned with collapse resistance [186, 202, 203], design optimization [187, 204, 205], 

and the influence of different kinds of external loads [185, 206]. Most of the papers are 

subjected to the experimental studies of the Levy dome, e.g., shape forming process [85, 174], 

active control [197, 207], and new structural solutions [198, 208]. Unlike the Geiger dome, the 

static and dynamic analysis of the Levy dome is the subject of a few numbers of papers. Among 

others, the static analysis was considered in [209-211], and the dynamic analysis in [202, 204, 

212].     
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This work aims to present the results of a complete static and dynamic analysis of the Levy 

dome. This type of cable-strut domes consisted of a system of repeating spatial load-bearing 

girders connected with lower circumferential cables. The domes with different geometry of a 

load-bearing girder and different numbers of load-bearing girders are concerned. Similarly to 

the Geiger dome, the girder is presented in two variants, i.e., close upper section (type A) and 

open upper section (type B). The names of analyzed domes are acronyms: L – Levy dome, the 

number – the number of load-bearing girders, and letter A or B – girders type, e.g., “L 6A” is 

the Levy dome with 6 load-bearing girders type A. 

6.2. Geometrical design 

Unlike the Geiger dome, the Levy dome consists of uniformly distributed spatial load-

bearing girders. The proposed geometrical designs include the own solutions (section 6.2.1) 

and solutions known from the literature (section 6.2.2). Only the first ones are the subject of 

further static and dynamic analysis.     

6.2.1. Proposed design solutions 

The first proposed design covers the geometry of small-scale domes. In contrast to small-

scale Geiger domes, the elements of the load-bearing girder are not in the same plane. The 

elements are divided into three groups, i.e., grid cables (elements: 1, 2, 3, 4, 5, 6), 

circumferential cables (C1, C2, C3, C4), and struts (S1, S2, S3). Fig. 6.3 presents the geometry 

of a repetitive spatial load-bearing girder of a Levy dome with a closed upper section (type A) 

(Fig. 6.3a), and an open one (type B) (Fig. 6.3b). The node coordinates of girders are presented 

for domes type A (Table 6.1) and type B (Table 6.2). The considered domes are 12 m wide and 

3.25 m heigh. The support is in every node of the lowest section of girder. The geometry of a 

Levy dome is significantly different from regular Geiger domes. The hoops are rotated relative 

to each other, so the struts are not located in one plane. The cables create a network of spatial 

triangles connected with struts. The geometry of Levy dome type A and B, consisted of six 

load-bearing girders is presented in Fig. 6.4. The additional modification of the geometry is an 

increase in the number of load-bearing girders. The domes with 8, 10, and 12 girders are also 

considered (Fig. 6.5). 
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a) b) 

  

Fig. 6.3. Load-bearing girder of the Levy dome: a) type A, b) type B   

 

Table 6.1. Node coordinates [m] of the load-bearing girder of the Levy dome type A 

No.  of 

node 
1 2 3 4 5 6 7 8 9 

x 0 2 4 ∙ cos𝛼 6 4 ∙ cos𝛼 

y 0 0 4 ∙ (−sin𝛼) 0 4 ∙ sin𝛼 

z 2.1 1.5 1.85 0.45 1.15 -1.15 0 1.15 -1.15 

 

Table 6.2. Node coordinates [m] of the load-bearing girder of the Levy dome type B 

No.  of 

node 
1 2 1* 2* 3 4 5 6 7 8 9 

x 0.5 ∙ cos𝛼 0.5 ∙ cos𝛼 2 4 ∙ cos𝛼 6 4 ∙ cos𝛼 

y 0.5 ∙ sin𝛼 0.5 ∙ (−sin𝛼) 0 4 ∙ (−sin𝛼) 0 4 ∙ sin𝛼 

z 2.1 1.5 2.1 1.5 1.85 0.45 1.15 -1.15 0 1.15 -1.15 

Note! Calculations must be performed in radians. 

where 𝑛𝑔 – number of girders, and 𝛼 is calculated as: 

𝛼 = (𝑛𝑔 − 1) ∙ 𝛼𝑎𝑑𝑑 +
𝛼𝑎𝑑𝑑

2
,     𝛼𝑎𝑑𝑑 = (

360

𝑛𝑔
)/180 ∙ 𝜋 (6.1) 
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a) b) 

  

Fig. 6.4. Levy dome: a) 6A, b) 6B 

 

a) b) C) 

   
d) e) f) 

   

Fig. 6.5. Levy dome: a) 8A, b) 10A, c) 12A, d) 8B, e) 10B, f) 12B 

6.2.2. Solutions from the literature 

The examples of the Levy dome presented in the literature contain different solutions for 

the load-bearing girder and cable system. Three examples of domes with different geometry are 

shown. Firstly, the dome presented by Chen&Feng [212] (Fig. 6.6) is considered. The structure 

is a large-span dome with a width of 100 m and a height of 8.2 m, consisted of 12 spatial load-

bearing girders, and the open upper section of the girder (L 12B). Unlike the solution presented 

in 6.2.1, some groups of elements are divided into subgroups (groups of elements 6 and C) (Fig. 

6.6b). The node coordinates for the load-bearing girder are presented in Table 6.3.    
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a) 

 
b) c) 

 

 

Fig. 6.6. Levy dome by [212]: a) geometry of a girder, b) 3D view, c) top view  

 

Table 6.3. Node coordinates [m] of the load-bearing girder of the Levy dome by [212] 

No.  of 

node 
1 2 3 4 5 6 7 8 9 

x 5 20 33.81 50 33.81 

y 0 0 9.1 0 -9.1 

z 8.2 3.2 6.2 0 3.2 -5.4 0 3.2 -5.4 

 

The second example is dome presented by Yuan et al. [180] (Fig. 6.7). The analyzed dome 

is 80 m wide and 9.8 m high, consists of six load-bearing girders, with closed upper section (L 

6A). The structure is supported in every external node of the girder.   

 

 

 

 



6. Levy domes 

 98 

 

a) b) 

 

 

Fig. 6.7. Levy dome by [180]: a) geometry of a girder, b) 3D view  

The third example is presented by Li et al. [206] (Fig. 6.8). The dome is approximately 1 

m wide and 0.2 m high, consists of eight load-bearing girders, with closed upper section (L 8A). 

The structure is considered as a prototype for further analyses. The examples provided in the 

literature mostly focus on different girder solutions, while the cable network remains the same. 

The dimensions of the girder are selected individually by each researcher in terms of the 

performed analyses.    

a) b) 

 
 

Fig. 6.8. Levy dome by [206]: a) geometry of a girder, b) 3D view  

6.3. Qualitative analysis 

Like in the case of the Geiger dome, qualitative analysis of the Levy dome relies on the 

identification of existing infinitesimal mechanisms and self-stress states. Due to a complex 

cable network, the Levy dome is considered as statically indeterminate tensegrity structure. The 

identification of self-equilibrium forces is performed using the spectral analysis (section 6.3.1), 

and genetic algorithm in comparison to methods from the literature (section 6.3.2).   
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6.3.1. Spectral analysis of truss matrices 

The spectral analysis of truss matrices allowed to determine the number of existing self-

stress states and infinitesimal mechanisms of Levy domes (see section 4.2.1). The summarized 

results for considered structures, i.e., L ngA, L ngB where 𝑛𝑔 =  {6, 8, 10, 12} number of load-

bearing girders, are contained in Table 6.4. 

Table 6.4. Results of the qualitative analysis of Levy domes 

No. of the 

load-bearing 

girders (𝑛𝑔) 

No. of 

nodes 

No 

of 

d.o.f 

No. of 

elements 

(𝑛) 

No. of 

struts 

(𝑛𝑠) 

No. of 

mechanisms 

(𝑛𝑚) 

No. of self-stress 

states (𝑛𝑠𝑡) 

Type A 

6 32 78 85 13 0 7 

8 42 102 113 17 0 11 

10 52 126 141 21 0 15 

12 62 150 169 25 0 19 

Type B 

6 42 42 114 18 1 7 

8 56 56 152 24 1 9 

10 70 70 190 30 1 11 

12 84 84 228 36 1 13 

 

The domes type A featured by existence of the self-stress states and absence of 

infinitesimal mechanisms. The number of infinitesimal mechanisms of dome type B is always 

one, regardless the number of girders. The number of existing self-stress states for both dome 

types is depending on number of load-bearing girders and can be calculated as: 

type A:  𝑛𝑠𝑡 = 𝑛𝑠 − 6;     

type B:  𝑛𝑠𝑡 = 𝑛𝑠 − 2 ∙ 𝑛𝑔 + 1 
(6.2)  

The superimposed self-stress states (Table 6.5) were used for further analysis for Levy 

domes. The values of obtained self-stress states were normalized in the way that force in the 

longest strut is equal to -1. The infinitesimal mechanism identified in type B domes is located 

in the upper section of the dome (Fig. 6.9).   
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Table 6.5. Values of self-stress state 𝐲𝑆 of the Levy domes 

Type A Type B 

el. 𝐲𝑆  el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 el. 𝐲𝑆 

S1 

-0.147(6) 

-0.308(8) 

-0.465(10) 

-0.616(12) 

1 

0.197(6) 

0.311(8) 

0.375(10) 

0.414(12) 

C1 

1.040(6) 

1.753(8) 

2.401(10) 

3.016(12) 

S1 

-0.031(6) 

-0.050(8) 

-0.061(10) 

-0.068(12) 

1 

0.100(6) 

0.157(8) 

0.189(10) 

0.209(12) 

C1 

1.040(6) 

1.753(8) 

2.401(10) 

3.016(12) 

S2 

-0.161(6) 

-0.218(8) 

-0.248(10) 

-0.264(12) 

2 

0.142(6) 

0.224(8) 

0.270(10) 

0.298(12) 

C2 

0.336(6) 

0.691(8) 

1.032(10) 

1.359(12) 

S2 

-0.161(6) 

-0.218(8) 

-0.248(10) 

-0.264(12) 

2 

0.073(6) 

0.114(8) 

0.137(10) 

0.151(12) 

C2 

0.336(6) 

0.691(8) 

1.032(10) 

1.359(12) 

S3 -1.000 
3 

4 

0.295(6) 

0.372(8) 

0.406(10) 

0.424(12) 

C4  S3 -1.000 
3 

4 

0.295(6) 

0.372(8) 

0.406(10) 

0.424(12) 

C3 

0.109(6) 

0.252(8) 

0.396(10) 

0.534(12) 

  
5 

6 

1.491(6) 

1.303(8) 

1.204(10) 

1.147(12) 

C6    
5 

6 

1.491(6) 

1.303(8) 

1.204(10) 

1.147(12) 

C4 

0.154(6) 

0.353(8) 

0.554(10) 

0.748(12) 
        (6) dome with 6 girders; (8) dome with 8 girders; (10) dome with 10 girders; (12) dome with 12 girders 

 

a) b) 

 

 
c) 

 

Fig. 6.9. Form of infinitesimal mechanism of L 6B dome: a) 3D view, b) top view, c) side view 
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The qualitative analysis of Levy domes determined following tensegrity features, i.e., the 

dome is a truss (T), with a continuous net of tensed cables (C), and discontinues net of 

compressed struts (D) surrounded by cables, and it features the existence of the self-stress state 

(SS) and infinitesimal mechanism (M) (only in case of dome type B). Nonetheless, not every 

existing self-stress state stiffens the mechanism and a superimposed self-stress state must be 

introduced to the structure. Therefore, the analyzed Levy domes type A are classified as 

structures with tensegrity features class 2, and Levy domes type B are classified as structures 

with tensegrity features class 1.   

6.3.2. Genetic algorithm 

The qualitative analysis of the Levy type B dome (L 12B) (Fig. 6.6) was also performed 

using the genetic algorithm. A set of self-equilibrated forces was described using the procedure 

presented in Section 4.2.2. Two series of calculations are performed using the following 

parameters: 

−   population size: 1000 (Series 1), 1100 (Series 2), 

− number of generations: 100 (Series 1), 150 (Series 2), 

− solutions in the population: 200 (Series 1), 250 (Series 2), 

− number of genes: equals the number of groups of elements.  

The values obtained by the genetic algorithm were compared to the exact values from the 

spectral analysis (section 6.3.1), and the one presented by Chen&Feng in [212]. Summarized 

results are provided in Table 6.6. The original values from the paper (Original) were normalized 

(Norm.) in such a way that the value in the longest strut is equal to -1 for comparison. 

Table 6.6. Values of self-stress state of the Levy dome obtained by different methods 

Groups  

of  

Elements 

Chen & Feng [212]  Present Study 

Original Norm. 
Relative 

Error 

Exact  

Solution 

GA 

Series 1 

Relative 

Error 

GA  

Series 2 

Relative 

Error 

1 392 1.285 23% 1.044 0.431 59% 0.675 35% 

2 248 0.813 15% 0.704 0.459 35% 0.390 45% 

3 644 2.111 105% 1.032 0.525 49% 0.627 39% 

4 688 2.256 133% 0.969 0.962 1% 0.963 1% 
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Table 6.6. Values of self-stress state of the Levy dome obtained by different methods - Continued 

Groups  

of  

Elements 

Chen & Feng [212]  Present Study 

Original Norm. 
Relative 

Error 

Exact  

Solution 

GA 

Series 1 

Relative 

Error 

GA  

Series 2 

Relative 

Error 

5 1343 4.403 57% 2.809 2.097 25% 2.234 20% 

6 

a 

901 2.954 

276% 0.786 0.190 76% 0.281 64% 

b 12% 2.639 2.805 6% 2.934 11% 

C1 

a 

1637 5.367 

47% 3.644 2.664 27% 2.916 20% 

b 8% 4.986 4.542 9% 4.874 2% 

C2 1307 4.285 37% 3.124 3.067 2% 3.093 1% 

C3 469 1.538 15% 1.333 0.884 34% 0.727 45% 

C4 750 2.459 23% 2.000 0.838 58% 1.282 36% 

S1 −52 −0.170 23% −0.138 −0.074 46% −0.083 40% 

S2 −126 −0.413 20% −0.345 −0.289 16% −0.270 22% 

S3 −305 −1.000 0% −1.000 −1.000 0% −1.000 0% 

 

The values provided in [212] are not meeting the criteria of the node equilibrium, and the 

relative errors are up to 276%. The differences may occur due to a different classification of 

groups of elements. In the case of the genetic algorithm, the accuracy of the obtained results is 

highly dependent on the parameters of the algorithm, higher convergence could be achieved by 

increasing these parameters. Obtained values are considered satisfactory in the case of second 

series, and meet the requirement of stable equilibrium (the equilibrium of nodes is close to 

zero).     

6.4. Quantitative analysis 

The quantitative analysis of Levy domes examines the influence of the initial prestress 

level on the behaviour of the structure under external load. As in the case of the Geiger dome, 
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the material properties and cross-sections of the elements are essential for consideration. It is 

assumed that cables are made of steel S460N. The “Type A” cables with a Young modulus of 

210 GPa [192] are used. The struts are made of hot-finished circular hollow sections (steel 

S355J2) with a Young modulus of 210 GPa. The density of steel is equal 𝜌 = 7860 kg/m3. 

The quantitative analysis is performed in terms of static, dynamic, and dynamic stability 

analyses. Each type of the analysis concerns the small-scale domes. Static analysis is performed 

for the small-scale domes consisted of six load-bearing girders (section 6.2.1). The qualitative 

analysis of small-scale domes, i.e., identifying existing self-stress states and infinitesimal 

mechanisms was performed in Section 6.3.2. Dynamic analysis concerns domes consisting of 

different numbers of load-bearing girders, i.e., 6, 8, 10, and 12 girders. In turn, dynamic stability 

analysis is provided for small-scale Geiger domes considered in the static analysis.  

The consideration of small-scale domes includes two variants of the geometry, i.e., L 6A 

and L 6B (Fig. 6.4). The cables with the diameter 𝜙 = 20 mm and load-bearing capacity 𝑁𝑅𝑑 =

110.2 kN are taken into account. For struts, there are rods with a diameter 𝜙 = 76.1 mm and 

thickness 𝑡 = 2.9 mm with lengths 0.6 m, 1.4 m, and 2.3 m and load-bearing capacity 𝑁𝑅𝑑 =

224.3 kN, 170.5 kN, and 107.1 kN respectively. The external load is considered in different 

positions, e.g., in 𝐏(𝑖), where 𝑖 = 1, 2, 3 (Fig. 6.10), and different values, i.e., 𝐏(𝑖) =

{1 kN, 5 kN}. Similarly to the Geiger dome, the minimum prestress level of the Levy domes is 

highly dependent on the load value and position (Table 6.7). In turn, the value of the maximum 

prestress level (𝑆𝑚𝑎𝑥) depends on the load-bearing capacity of the most stressed elements. For 

all structures, it was assumed as S𝑚𝑎𝑥 = 50 kN. The maximum effort of cables is  𝑊𝑚𝑎𝑥,𝐶  = 0.7, 

and the maximum effort of struts is  𝑊𝑚𝑎𝑥,𝑆  = 0.48. 

a) b) 

  

Fig. 6.10. Position of the external load on the girder: a) type A, b) type B 
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Table 6.7. The 𝑆𝑚𝑖𝑛 values for Levy domes under external load 

A 

Load value 

B 

Load value 

𝑃 = 1 kN 𝑃 = 5 kN P = 1 kN P = 5 kN 

Load position Load position Load position Load position 

𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 

𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN] 

4 9 1 18 42 5 22 10 3 - 50 12 

A – type A, B – type B 

Note! 

In the case of the Levy dome, selected profiles were not sufficient to identify the 𝑆𝑚𝑖𝑛 level 

for the load position 𝐏(1) (for P = 5 kN), and 𝑆𝑚𝑖𝑛 = 𝑆𝑚𝑎𝑥 for the load position 𝐏(2) (for P =

5 kN). It was decided to increase the cross-section of the elements. The cables with the diameter 

𝜙 = 27 mm and load-bearing capacity 𝑁𝑅𝑑 = 206.7 kN were selected instead. For struts, there 

are rods with a diameter 𝜙 = 82.5 mm and thickness 𝑡 = 3.2 mm with lengths 0.6 m, 1.4 m, 

and 2.3 m and load-bearing capacity 𝑁𝑅𝑑 = 297.6 kN, 233.4 kN, and 154.0 kN respectively. 

For all structures, it was assumed as S𝑚𝑎𝑥 = 120 kN. The maximum effort of cables is  𝑊𝑚𝑎𝑥,𝐶  = 

0.9, and the maximum effort of struts is  𝑊𝑚𝑎𝑥,𝑆  = 0.48. Further analysis was carried out using 

updated cross-sections.  

  Table 6.8. The updated 𝑆𝑚𝑖𝑛 values for Levy domes under external load 

A 

Load value 

B 

Load value 

𝑃 = 1 kN 𝑃 = 5 kN P = 1 kN P = 5 kN 

Load position Load position Load position Load position 

𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 𝐏(1) 𝐏(2) 𝐏(3) 

𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN] 𝑆𝑚𝑖𝑛 [kN] 

4 9 1 18 42 5 22 10 3 95 50 12 

A – type A, B – type B 

 

Additionally, the static analysis of the realistic-scale Levy dome is performed. The 

realistic-scale dome geometry was obtained by the rescaling of the small-scale dome, and 

resulted in the same self-stress values (Table 6.5). 

In the charts the following symbols are used: II – second-order theory, III – third-order 

theory, 1 – external load equal to 1 kN, 5 – external load equal to 5 kN, s – struts, c – cables, A 

– type A, B – type B, L1 – realistic dome with symmetrical load, L2 – realistic dome with 
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asymmetrical load. The caption “A 1(II)” stands for the Levy dome type A loaded with force 1 

kN analyzed using the second-order theory, and “L1 (II)” stands for the Levy dome with 

symmetrical load analyzed using the second-order theory. 

6.4.1. Static analysis of small-scale domes 

Similarly to the Geiger dome, static analysis of the Levy domes concerns the impact of the 

initial prestress on the behaviour of the structure under time-independent external load. 

Particularly, the displacements (𝑞𝑦, 𝑞𝑧), maximum effort of structure 𝑊𝑚𝑎𝑥, and stiffness 

parameter 𝐺𝑆𝑃 are studied under the influence of the prestress. The displacements are measured 

for the node located on the girder opposite to the location of the loaded node (node d depends 

on the position of load) (Fig. 6.10). The examples provided below are to compare the static 

response of the L 6A and L 6B domes in the case of different load positions. Firstly, the load 

position 𝐏(1) is considered (Example 1), then the load position 𝐏(2) (Example 2), and finally 

the load position 𝐏(3) (Example 3).              

Example 1 

Subject of the comparison: L 6A (Fig. 6.11a) and L 6B (Fig. 6.11b) domes, load position 𝐏(1) 

– behaviour under the external load 

Aim of the comparison: (1) Whether the design solution (close or open upper section) of the 

structure matter in the case of load position 𝐏(1)? (2) Which dome (Geiger or Levy) is more 

sensitive in the case of the load position 𝐏(1)?  

a)                              L 6A b)                                L 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 4 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 18 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 22 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 95 kN 

  

Fig. 6.11. External load application in the case of position 𝐏(1) for: a) L 6A, b) L 6B  



6. Levy domes 

 106 

 

The first considered example examines the influence of the initial prestress on the static 

parameters in the case of the load position 𝐏(1). The external load is located in the upper section 

of the dome, i.e., where the infinitesimal mechanism is located for the dome type B. The impact 

of the initial prestress on the plane displacement 𝑞𝑦 (Fig. 6.12) and vertical displacement 𝑞𝑧 

(Fig. 6.13) is considered. In the case of the dome type A, the displacements are insensitive to 

the change in the prestress. The situation is opposite for the dome type B. The influence of the 

initial prestress level is nonlinear. The results obtained from the second-order theory and third-

order theory are convergent only for the lower load in the high prestress range (𝑆 = 70 ÷

120 kN). It is worth mentioning, that increasing of the external load results in the change of the 

direction of the plane displacement 𝑞𝑦 (Fig. 6.12b). The influence of the initial prestress level 

on the maximum effort of elements 𝑊𝑚𝑎𝑥 (Fig. 6.14) is linear for both structures. The 𝐺𝑆𝑃 

parameter of the dome type A (Fig. 6.15a) is constant at value 1 and is not depending on the 

prestress. For the dome type B (Fig. 6.15b), the relation between 𝐺𝑆𝑃 parameter and initial 

prestress level is linear. The increasing in the external load results in the decrease of the stiffness 

of the structure up to 60% (for 𝑆 = 120 kN).           

a) b) 

  

Fig. 6.12. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑦 in the case of the load position 

𝐏(1) for: a) L 6A, b) L 6B  
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a) b) 

  

Fig. 6.13. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑧 in the case of the load position 

𝐏(1) for: a) L 6A, b) L 6B  

 

a) b) 

  

Fig. 6.14. Impact of the initial prestress 𝑆 on the maximum effort of structure 𝑊𝑚𝑎𝑥 in the case of 

the load position 𝐏(1) for: a) L 6A, b) L 6B  

 

a) b) 

  

Fig. 6.15. Impact of the initial prestress 𝑆 on the 𝐺𝑆𝑃 parameter in the case of the load position 𝐏(1) 

for: a) L 6A, b) L 6B  
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Conclusion of the comparison: The load positioned in the upper section is significant for the 

Levy dome type B due to a localization of the infinitesimal mechanism (Fig. 6.9). Unlike the 

dome type A, the L 6B dome is sensitive to the change of the initial prestress level and external 

load. Comparing the behavior of the Geiger dome and Levy dome for the same load position 

(section 5.4.1: Example 1), it can be noticed that Levy dome type A behaves similarly to the 

Geiger domes RG 6A and MG 6A, i.e., the prestress has no impact on the displacements or 

stiffness of the structure. The Levy dome type B is characterized by a high impact of the initial 

prestress level and bigger displacements. 

Example 2 

Subject of the comparison: L 6A (Fig. 6.16a) and L 6B (Fig. 6.16b) domes, load position 𝐏(2) 

– behaviour under external load 

Aim of the comparison: Whether the design solution (close or open upper section) of the 

structure matter in the case of load position 𝐏(2)? (2) Which dome (Geiger or Levy) is more 

sensitive in the case of the load position 𝐏(2)? 

 a)                              L 6A b)                                L 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 9 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 42 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 10 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 50 kN 

 
 

Fig. 6.16. External load application in the case of position 𝐏(2) for: a) L 6A, b) L 6B  

The second example considers the load position 𝐏(2). The consideration includes the 

impact of the initial prestress level on the plane displacement 𝑞𝑥 (Fig. 6.17) and vertical 

displacement 𝑞𝑧 (Fig. 6.18). In contrast to Example 1, the biggest displacements are obtained 

for the L 6A dome, whereas the displacements of the L 6B dome are almost constant and 

insensitive to the change in the external load. The results obtained using second-order theory 

and third-order theory are fully convergent for both domes. The influence of the initial prestress 
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level on the maximum effort of structure 𝑊𝑚𝑎𝑥 (Fig. 6.19) is linear, as well as on the 𝐺𝑆𝑃 

parameter (Fig. 6.20). Nevertheless, for the L 6B dome and P = 1 kN (Fig. 6.20b) the 

nonlinearity can be noticed and the graph has a reverse behaviour. The increasing of the external 

load resulted in the decreasing of the stiffness up to 7% and 17%, for L 6A and L 6B domes 

respectively.           

a) b) 

  

Fig. 6.17. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑦 in the case of the load position 

𝐏(2) for: a) L 6A, b) L 6B  

 

a) b) 

  

Fig. 6.18. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑧 in the case of the load position 

𝐏(2) for: a) L 6A, b) L 6B  
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a) b) 

  

Fig. 6.19. Impact of the initial prestress 𝑆 on the maximum effort of structure 𝑊𝑚𝑎𝑥 in the case of 

the load position 𝐏(2) for: a) L 6A, b) L 6B  

 

a) b) 

  

Fig. 6.20. Impact of the initial prestress 𝑆 on the 𝐺𝑆𝑃 parameter in the case of the load position 𝐏(2) 

for: a) L 6A, b) L 6B  

Conclusion of the comparison: Despite the absence of the infinitesimal mechanism in the L 6A 

dome, the influence of the initial prestress level on the displacements and stiffness of the 

structure can be noticed. Because the load is positioned further away from the localization of 

the mechanism (Fig. 6.9), the L 6B dome is almost insensitive to the change in the initial 

prestress, and displacements are considerably lower in comparison to the L 6A dome. 

Nonetheless, Geiger domes are more sensitive to the change in the initial prestress level, i.e., 

characterized by bigger displacements and higher stiffness of the structure.   
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Example 3 

Subject of the comparison: L 6A (Fig. 6.21a) and L 6B (Fig. 6.21b) domes, load position 𝐏(3) 

– behaviour under external load 

Aim of the comparison: Whether the design solution (close or open upper section) of the 

structure matter in the case of load position 𝐏(3)? (2) Which dome (Geiger or Levy) is more 

sensitive in the case of the load position 𝐏(3)?  

a)                              L 6A b)                                L 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 1 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 5 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 3 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 12 kN 

  

Fig. 6.21. External load application in the case of position 𝐏(3) for: a) L 6A, b) L 6B  

The third example focuses on the influence of the initial prestress in the case of the load 

position 𝐏(3). In this situation, the external load positioned furthest from the localization of the 

infinitesimal mechanism in the L 6B dome. The impact of the initial prestress on the 

displacements 𝑞𝑦 (Fig. 6.22) and 𝑞𝑧 (Fig. 6.23) is considered. Similarly to the Example 2, the 

L 6A dome is characterized by biggest displacements, nonetheless, the displacements are even 

three times smaller than in the Example 2. The influence of the initial prestress is linear. In the 

case of L 6B, the displacements are almost constant, insensitive to the change in the external 

load and initial prestress level. The maximum effort of structure 𝑊𝑚𝑎𝑥 (Fig. 6.24) and the 𝐺𝑆𝑃 

parameter (Fig. 6.25) have linear behaviour as well. The increase in the external load is not 

affecting the stiffness of the structure, which remains on the same level 𝐺𝑆𝑃 = 1.07 ÷ 1.14.     
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a) b) 

  

Fig. 6.22. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑦 in the case of the load position 

𝐏(3) for: a) L 6A, b) L 6B  

 

a) b) 

  

Fig. 6.23. Impact of the initial prestress 𝑆 on the displacement 𝑞𝑧 in the case of the load position 

𝐏(3) for: a) L 6A, b) L 6B  

 

a) b) 

  

Fig. 6.24. Impact of the initial prestress 𝑆 on the maximum effort of structure 𝑊𝑚𝑎𝑥 in the case of 

the load position 𝐏(3) for: a) L 6A, b) L 6B  
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a) b) 

  

Fig. 6.25. Impact of the initial prestress 𝑆 on the 𝐺𝑆𝑃 parameter in the case of the load position 𝐏(3) 

for: a) L 6A, b) L 6B  

Conclusion of the comparison: Despite the fact that L 6B dome is characterized by the self-

stress state and infinitesimal mechanism, in the case of external load position 𝐏(3), the initial 

prestress has almost no impact on the static parameters of the dome, as well as external load 

value. In turn, the Geiger dome with the same load conditions is characterized by the higher 

sensitivity to the change in the initial prestress level.   

6.4.2. Static analysis of the realistic-scale dome 

The one geometry is chosen for the realistic-scale dome, i.e., realistic-scale type A Levy 

dome consisted of six load-bearing girders (L 6A) (Fig. 6.4a). The dome is 20 m wide and 3.5 

m high (Fig. 6.26). The structure consists of 85 elements, i.e., 13 struts and 72 cables. The struts 

are designed as tubes CHS 108x4.5. Due to the different lengths, the struts were divided into 

three groups, i.e., six struts of 3.83 m length, six struts of 2.33 m length, and one strut of 1 m 

length, with the maximum load-bearing capacity of 𝑁𝑅𝑑 = 224 kN, 402 kN, and 499 kN, 

respectively. In turn, the cables are assumed to be made of “D36” with a maximum load-bearing 

capacity of 𝑁𝑅𝑑 = 367.5 kN. The external load application and value was the same as in the 

case of realistic Geiger dome (section 5.4). The load was applied symmetrically (L1) (Fig. 

5.30a) and asymmetrically (L2) (Fig. 5.30b). The minimum prestress level for the dome is equal 

to 𝑆𝑚𝑖𝑛= 11 kN, whereas the maximum prestress level was assumed as S𝑚𝑎𝑥 = 190 kN. The 

maximum effort of structure is  𝑊𝑚𝑎𝑥  = 0.91. 
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a) b) 

 

 
Fig. 6.26. Load-bearing girder of the realistic Levy dome: a) cross section, b) 3D view 

As in the case of the Geiger dome, the impact of the initial prestress level 𝑆 on the 

displacements 𝑞𝑥 and 𝑞𝑧 of the top node 1 (Fig. 6.26), maximum effort of structure 𝑊𝑚𝑎𝑥, and 

stiffness parameter 𝐺𝑆𝑃 of the realistic Levy dome is considered.  

Unlike the Geiger dome, the impact of the initial prestress level on the plane displacement 

𝑞𝑥 (Fig. 6.27a) is linear, and on vertical displacement 𝑞𝑧 (Fig. 6.27b) – is absent. The results 

obtained using the second-order theory and third-order theory are fully convergent even at the 

low levels of initial prestress. The asymmetrical load type (L1) affects only the plane 

displacement 𝑞𝑥, whereas vertical displacements are insensitive to the load type. The maximum 

effort of the structure 𝑊𝑚𝑎𝑥 (Fig. 6.27) increased linearly, the effort for both load types is the 

same. The 𝐺𝑆𝑃 parameter, on the other hand, depend on the external load nature. Comparing 

to the Geiger dome, the stiffness is significantly lower, i.e., 𝐺𝑆𝑃 = 7 and 𝐺𝑆𝑃 = 1.23, for 

Geiger and Levy dome respectively (in the case of asymmetrical load). The decrease is up to 

82%. In the case of symmetrical load, the 𝐺𝑆𝑃 parameter is constant at value 1.  

a) b) 

  

Fig. 6.27. Impact of the initial prestress 𝑆 on the displacement: a) 𝑞𝑥, b) 𝑞𝑧 
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a) b) 

  

Fig. 6.28. Impact of initial prestress 𝑆 on the: a) maximum effort of structure 𝑊𝑚𝑎𝑥, b) 𝐺𝑆𝑃 

parameter 

Due to a lack of the infinitesimal mechanism, the considered Levy dome is insensitive to 

the change in the initial prestress level. The impact of the different types of external load is 

significantly lower comparing to the Geiger dome. The analysis can be carried out using the 

second-order theory. 

6.4.3. Dynamic analysis 

The dynamic analysis of Levy dome concerns the impact of the initial prestress level on 

natural and free frequencies of the structure. The section is divided onto analysis of natural 

frequencies correspond to the infinitesimal mechanism (Example 1), additional natural 

frequencies that depend on the initial prestress (Example 2), and free frequencies (Example 3).  

Example 1 

Subject of the comparison: L 𝑛𝑔A, L 𝑛𝑔B domes (𝑛𝑔 = {6,8,10,12}) - natural frequency 

correspond to the infinitesimal mechanism 

Aim of the comparison: (1) How does the initial prestress level impact the natural frequency 

correspond to the infinitesimal mechanism? (2) Whether the number of load-bearing girders 

impacts the natural frequency corresponding to the infinitesimal mechanism? (3) How does the 

design solution (open or closed upper section) impact the dome behaviour? 

The analysis concerns the small-scale Levy domes from the section 6.4.1. Considered 

structure consist of different number of load-bearing girders (𝑛𝑔), i.e., 𝑛𝑔 = {6,8,10,12}. The 

qualitative analysis, i.e., the identification of self-stress states and infinitesimal mechanisms, 
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was performed in section 6.3.1. In the case of type A Levy domes (L 𝑛𝑔A) the number of 

infinitesimal mechanisms (𝑛𝑚) is equal to zero. In turn, the L 𝑛𝑔B dome characterized by one 

natural frequency 𝑓1 that correspond to one infinitesimal mechanism. Fig. 6.29 presents the 

influence of the initial prestress level on the first natural frequency 𝑓1 of considered domes. 

The first natural frequency 𝑓1 of type A domes is not related to the mechanism and the absence 

of the initial prestress is not equal to zero natural frequency. Thus, the increasing of the initial 

prestress level causes small linear increasing of natural frequencies L 𝑛𝑔A domes. It is worth 

to mention, the natural frequencies 𝑓1 for domes with 8, 10, and 12 load-bearing girders remain 

on the same level 𝑓1 = 16.5 ÷ 18.3 Hz. In turn, for the L 6A dome it equals 𝑓1 = 12.8 ÷

13.7 Hz (Fig. 6.29a). 

For the domes type B, zero prestress (𝑆 = 0) results in zero frequencies (Fig. 6.29b). The 

increase in the number of load-bearing girders affecting only natural frequencies related to the 

infinitesimal mechanism, and the impact of the initial prestress level is nonlinear. The 

discrepancy between the first natural frequency 𝑓1 values is around 11 ÷ 12 Hz for 𝑆𝑚𝑎𝑥. In 

the case of 𝑆 = 0, the forms of vibrations realize the forms of infinitesimal mechanisms. Fig. 

6.30 presents forms of vibrations of the Levy domes type B.       

a) b) 

  

Fig. 6.29. Influence of the initial prestress 𝑆 on the first natural frequency 𝑓1 of: a) L 𝑛𝑔A, b) 

L 𝑛𝑔𝐵,  
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a) 

 

b) 

 
c) 

 

d) 

 

Fig. 6.30. Forms of vibrations for the L 𝑛𝑔B dome: a) L 6B, b) L 8B, c) L 10B, d) L 12B 

Conclusion of the comparison: The natural frequency corresponding to the infinitesimal 

mechanisms is characterized by a high sensitivity to the change in the initial prestress level. 

Additionally, the impact of the prestress is nonlinear. The number of load-bearing girders 

affects only the first natural frequency 𝑓1 of the type B domes (open section).  

The first natural frequency 𝑓1 of the type A dome remains on the similar level, nonetheless 

small linear impact of the initial prestress level is present. Only the increasing of the number of 

load-bearing girders from six to eight effected the first natural frequency 𝑓1 of the type A dome. 

Example 2  

Subject of the comparison: L 𝑛𝑔A, L 𝑛𝑔B domes (𝑛𝑔 = {6,8,10,12}) - additional natural 

frequencies dependent on the initial prestress level 

Aim of the comparison: (1) Whether the initial prestress level impacts the next natural 

frequencies that not correspond to the infinitesimal mechanism? (2) Whether the number of 

load-bearing girders impacts the natural frequencies that not correspond to the infinitesimal 
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mechanisms? (3) How does the design solution (open or close upper section) impact the dome 

behaviour?     

The natural frequencies of the type A Levy domes do not correspond to the infinitesimal 

mechanisms, and the next natural frequencies (𝑓2, 𝑓3, 𝑓4, 𝑓5) were considered for this 

example. As in the case of the type A Geiger domes, the type B Levy domes (L 𝑛𝑔B) are 

characterized by additional natural frequencies depending on the initial prestress level. The 

number of dependent frequencies 𝑓𝑡𝑜𝑡𝑎𝑙 depends on the number of girders (𝑛𝑔):  

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑛𝑚 + 𝑓𝑎𝑑𝑑;       𝑓𝑎𝑑𝑑 = (𝑛𝑔 − 4) (6.3) 

 

a) b) 

  
b) c) 

  

Fig. 6.31. Influence of the initial prestress 𝑆 on the natural frequencies 𝑓 of: a) L 6A, b) L 8A, 

c) L 10A, d) L 12A 
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a) b) 

  
c) d) 

 
 

Fig. 6.32. Influence of the initial prestress 𝑆 on the natural frequencies 𝑓𝑛𝑚, 𝑓𝑎𝑑𝑑, and 

𝑓𝑡𝑜𝑡𝑎𝑙+1 of: a) L 6B, b) L 8B, c) L 10B, d) L 12B 

Fig. 6.31 and Fig. 6.32 present the natural frequencies of Levy domes. The L 𝑛𝑔A 

domes natural frequencies are not corresponded to the mechanism, yet a small linear 

dependency on the initial prestress level can be noticed (Fig. 6.31). The number of load-bearing 

girder also effects the value of natural frequencies. As in the case of the Geiger domes, some 

frequencies characterized by same values but different forms of vibrations. The influence of the 

initial prestress is higher for higher frequencies.  

In turn, the natural frequencies of the L 𝑛𝑔B domes depend nonlinearly on the initial 

prestress level (Fig. 6.32). The first frequency is the one corresponding to the infinitesimal 
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mechanism (𝑓𝑛𝑚), next are that additional dependent on the prestress (𝑓𝑎𝑑𝑑), and first 

independent of prestress (𝑓𝑡𝑜𝑡𝑎𝑙+1). Similarly to the Geiger domes, in the case of zero prestress 

(𝑆 = 0), the frequency 𝑓𝑛𝑚 is equal to zero, and after introducing prestress 𝑆  the values 𝑓𝑛𝑚 

increase in nonlinear way. For the frequencies 𝑓𝑎𝑑𝑑  the absence of prestress is not resulted in 

zero values and the frequencies also increase nonlinearly. Nonetheless, nonlinearity and 

sensitivity to the changes in the initial prestress decreases for the higher frequencies. The value 

of the first independent frequency is on the similar level 𝑓𝑡𝑜𝑡𝑎𝑙+1 = 18.4 Hz ÷ 23.9 Hz. 

Conclusion of the comparison: In the case of type A Levy domes (L 𝑛𝑔A) all natural 

frequencies characterized by the small linear dependency on the initial prestress level.  

In turn, for the L 𝑛𝑔B domes, the number of additional natural frequencies that depend 

on the initial prestress level highly depend on the number of load-bearing girders.   

Example 3 

Subject of the comparison: L 6A, L 6B domes - free frequencies 

Aim of the comparison: (1) How does the initial prestress level impact free frequencies? (2) 

How do the value and position of load impact free frequencies?  

The analysis of free frequencies of the Levy domes contains results for first frequency 

𝑓1(𝑃) of L 6A dome (Table 6.9) and L 6B dome (Table 6.9). In the case of L 6A dome, the 

values of natural frequency 𝑓1(0) and free frequencies 𝑓1(𝑃) are identical for each case of load 

value and position. The lowest values of the 𝑆𝑚𝑖𝑛 are noticed for the load position 𝐏(2). In turn, 

for the L 6B dome, the lowest values of the 𝑆𝑚𝑖𝑛  are for the load position 𝐏(1) (the localization 

of the infinitesimal mechanism). The further the load from this position, the higher the value of 

the minimum prestress level.   

The biggest discrepancy between natural and free frequencies is noticeable for the L 6B in 

the case P = 5 kN. Depending on the position, it is approximately 2%, 12%, or 4% (for 𝐏(1), 

𝐏(2), and 𝐏(3) respectively), in the case of minimum prestress level 𝑆𝑚𝑖𝑛. The increasing of the 

initial prestress level results in the convergence of the values of natural and free frequencies. In 

the case of the prestress level 𝑆 = 100 kN, the difference is around 0.3%, 6%, and 1% (for 𝐏(1), 

𝐏(2), and 𝐏(3) respectively). In turn, for the 𝑆 = 120 kN values are fully convergent for each 

load value and position.  
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Table 6.9. First natural 𝑓𝑖(0) and free 𝑓𝑖(𝑃) frequency [Hz] for the L 6A dome 

𝑆 

[kN] 
𝑓1(0) 

𝑓1(𝑃) 

𝐏(1) 𝐏(2) 𝐏(3) 

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 

0 12.84       

1 12.86     12.86  

4 12.91 12.91    12.91  

5 12.92 12.92  12.92  12.92 12.92 

9 12.99 12.99  12.99  12.99 12.99 

10 13.01 13.01  13.00  13.01 13.00 

18 13.14 13.14 13.14 13.14  13.14 13.13 

20 13.17 13.18 13.18 13.17  13.18 13.17 

30 13.34 13.34 13.34 13.34  13.34 13.33 

40 13.50 13.50 13.51 13.50  13.50 13.50 

42 13.53 13.54 13.53 13.54 13.52 13.53 13.53 

50 13.67 13.67 13.67 13.66 13.65 13.66 13.66 

60 13.83 13.83 13.83 13.82 13.81 13.82 13.81 

70 13.98 13.98 13.98 13.98 13.96 13.98 13.98 

80 14.14 14.14 14.14 14.13 14.12 14.14 14.13 

90 14.29 14.29 14.29 14.29 14.27 14.29 14.36 

100 14.44 14.44 14.44 14.44 14.42 14.44 14.44 

110 14.59 14.59 14.59 14.59 14.57 14.59 14.59 

120 14.74 14.74 14.74 14.74 14.72 14.74 14.73 

 

 

Table 6.10. First natural 𝑓𝑖(0) and free 𝑓𝑖(𝑃) frequency [Hz] for the L 6B dome 

𝑆 

[kN] 
𝑓1(0) 

𝑓1(𝑃) 

𝐏(1) 𝐏(2) 𝐏(3) 

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 

0 0.00       

1 2.49       

3 4.32     4.23  

5 5.57     5.51  

10 7.88   7.51  7.84  

12 8.63   8.29  8.56 8.26 

20 11.15   10.88  11.11 10.84 

22 11.69 11.54  11.38  11.64 11.35 

30 13.65 13.53  13.42  13.62 13.38 
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Table 6.10. First natural 𝑓𝑖(0) and free 𝑓𝑖(𝑃) frequency [Hz] for the L 6B dome - Continued 

𝑆 

[kN] 
𝑓1(0) 

𝑓1(𝑃) 

𝐏(1) 𝐏(2) 𝐏(3) 

1 kN 5 kN 1 kN 5 kN 1 kN 5 kN 

40 15.76 15.65  15.55  15.74 15.49 

48 17.25 17.17  17.05 15.16 17.23 16.98 

50 17.62 17.53  17.41 15.53 17.59 17.34 

60 19.31 19.22  19.07 17.23 19.28 18.98 

70 20.85 20.77  20.55 18.75 20.81 20.42 

80 22.13 22.01  21.81 20.11 22.08 21.66 

90 23.01 22.91  22.85 21.35 22.98 22.70 

95 23.44 23.34 22.94 23.31 21.92 23.41 23.18 

100 23.85 23.76 23.38 23.75 22.48 23.83 23.63 

110 24.57 24.57 24.24 24.57 23.52 24.57 24.49 

120 24.64 24.67 24.63 24.64 24.66 24.64 24.63 

 

Conclusion of the comparison: In the comparison to the type A dome (L 6A), the free 

frequencies of the type B dome (L 6B) are highly dependent on the initial prestress level. The 

dependency on the load value and position is significant only in low levels of initial prestress, 

an increase in the initial prestress level results in a decrease in the sensitivity of the free 

frequencies to the load. In the case of type A dome (L 6A), the natural frequencies do not depend 

neither on the load value nor the position.  

6.4.4. Dynamic stability analysis 

The dynamic stability analysis of a small-scale Levy domes is considered. Particularly, the 

influence of the initial prestress level on the shape and range of unstable regions is analyzed. A 

few examples are provided in order to compare the behaviour of different domes under the 

periodic load. Firstly, the case of the load position 𝐏(1) (Example 1), next the load position 𝐏(2) 

(Example 2), and the load position 𝐏(3) (Example 3). The consideration is concluded with 

summarized results (Example 4).      

Example 1 

Subject of the comparison: L 6A (Fig. 6.33a) and L 6B (Fig. 6.33b) domes, load position 𝐏(1)  

– unstable regions 
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Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of 

load position 𝐏(1)? (2) Does the design solution (close or open upper section) affect unstable 

regions in the case of load position 𝐏(1)?  

a)                              L 6A b)                                L 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 4 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 18 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 22 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 95 kN 

  

Fig. 6.33. External load application in the case of position 𝐏(1) for: a) L 6A, b) L 6B  

The first example concerns the impact of the initial prestress level on the unstable regions 

of L 6A and L 6B domes, in the case of the load position 𝐏(1). The selected instability regions 

are presented for three levels of initial prestress, and two load variants P = 1 kN and P = 5 kN 

(Table 6.11). In the case of the L 6A dome, the initial prestress level has no impact on the 

resonant frequencies due to the absence of the infinitesimal mechanism, the frequency (𝜂1(A)) 

remains on the similar level 𝜂1 = 25.8 Hz ÷27.7 Hz. The situation is opposite for the L 6B 

dome. The resonant frequency (𝜂1(B)) depend on both the initial prestress level and the external 

load. The small instability region can be noticed in the case of load variant P = 5 kN for the 

𝑆𝑚𝑖𝑛 level of initial prestress.    

The L 6B dome characterized by the additional resonant frequencies’ dependent on the 

initial prestress level (see section 6.4.3). The frequencies 𝜂2, 𝜂3, 𝜂4, and 𝜂5 do not depend on 

the pulsatility index 𝜐, the boundaries of instability regions coincide. Nonetheless, they are 

sensitive to change in the initial prestress level (Table 6.12). For the L 6A dome the situation is 

similar, however, the dependency on the initial prestress is significantly lover. The relative 

increase (RI) of L 6A dome is about 1.08% - 14.18%, while for L 6B it is around 56.64% - 

6.19% (in the case P = 1 kN). The increase in the external load led to a decrease in the influence 

of the initial prestress. The RI is even five times smaller in the case of load P = 5 kN than for 

the P = 1 kN for the L 6B dome (for frequencies 𝜂2, 𝜂3).     
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      Table 6.11. Limits of first instability regions of the L 6A and L 6B domes for load position 𝐏(1)   

 
𝑆𝑚𝑖𝑛(A) = 4 kN 

𝑆𝑚𝑖𝑛(B) = 22 kN 
𝑆 = 40 kN 𝑆 = 60 kN 

1 

kN 

   

 
𝑆𝑚𝑖𝑛(A) = 18 kN 

𝑆𝑚𝑖𝑛(B) = 95 kN 
𝑆𝑚𝑖𝑛 + 15 kN 𝑆𝑚𝑖𝑛 + 25 kN 

5 

kN 

   

      Table 6.12. Resonant frequencies of the L 6A and L 6B domes in the case of load position 𝐏(1) 

 

L 6A L 6B 

Resonant frequency 𝜂(𝜐 = 0 ÷ 0.75) = const. 
𝜂2 𝜂3 𝜂4 𝜂2 𝜂3 𝜂4 𝜂5 𝜂6 

𝐏 = 𝟏 𝐤𝐍 

𝑆𝑚𝑖𝑛 25.82 81.33 82.67 31.57 32.38 47.93 47.95 74.10 

𝑆𝑚𝑎𝑥 29.48 82.21 85.97 49.28 50.72 50.90 54.48 74.71 

RI* 14.18% 1.08% 3.99% 56.10% 56.64% 6.19% 13.62% 0.82% 

𝐏 = 𝟓 𝐤𝐍 

𝑆𝑚𝑖𝑛 26.29 81.43 83.09 47.08 47.93 48.91 48.96 74.56 

𝑆𝑚𝑎𝑥 29.48 82.20 85.99 49.29 50.11 50.98 53.98 74.71 

RI* 12.13% 0.95% 3.49% 4.69% 4.55% 4.23% 10.25% 0.20% 

RI* – relative increase: [(𝜂(Smin ) − 𝜂(S𝑚𝑎𝑥))/𝜂(S𝑚𝑖𝑛) ∙ 100%] 
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Fig. 6.34 presents the impact of the initial prestress level on the range and distribution of 

instability regions. The results are provided only for the L 6B dome. The instability regions of 

L 6A dome are insensitive to the change in the prestress. The increase of the initial prestress 

level results in the gradual reduction of the areas of instability regions, however, for the 𝑆 =

80 kN the unpredictable growth occurs (in the case P = 1 kN) (Fig. 6.34a). In the case of 𝑆 >

80 kN, the behaviour is the same to the case P = 5 kN (Fig. 6.34b). For both cases, the 

noticeable decrease in the area of the unstable region occurs at the level 𝑆 = 110 ÷ 115 kN. 

The decrease is about 66% and 77%, for P = 1 kN and P = 5 kN respectively. 

a) b) 

  

Fig. 6.34. Influence of the initial prestress level 𝑆 on the range of unstable region of: a) L 6B for 

P = 1 kN, b) L 6B for P = 5 kN 

Conclusion of the comparison: The dynamic stability analysis shows that the behaviour of L 

6A and L 6B is completely different. The differences are related to the occurrence of the 

infinitesimal mechanisms.  Whereas, the increasing of the initial prestress level results in the 

increasing of resonant frequencies values and narrowing of the unstable regions of type B dome. 

In turn, the type A dome is insensitive to the change. Additionally, the impact of the initial 

prestress level is greater as external load increases.   

Example 2 

Subject of the comparison: L 6A (Fig. 6.35a) and L 6B (Fig. 6.35b) domes, load position 𝐏(2)  

– unstable regions 

Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of 

load position 𝐏(2)? (2) Does the design solution (close or open upper section) affect unstable 

regions in the case of load position 𝐏(2)?   
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a)                              L 6A b)                                L 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 9 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 42 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 10 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 50 kN 

 
 

Fig. 6.35. External load application in the case of position 𝐏(2) for: a) L 6A, b) L 6B  

The second example concerns influence of the initial prestress level on the unstable regions 

in the case of load position 𝐏(2) (Table 6.13). The dynamic behaviour is presented for load 

conditions P = 1 kN and P = 5 kN, and three levels of initial prestress. In this case, the 𝑆𝑚𝑖𝑛 is 

on the similar level, however, the instability regions distribution is different. As in the Example 

1, the resonant frequency 𝜂1 of the L 6A is on the same level, do not depend on the pulsatility 

index  𝜐, and the risk of the excitation of unstable motion decreases. In turn, for the L 6B dome, 

the increasing of external load resulted in the widening of the limits of instability region.  

Next, the impact of the initial prestress level on the range and distribution of instability 

regions is compared (Fig. 6.36). Similarly to the Example 1, the behaviour of instability regions 

under the influence of the initial prestress level is characterized by the gradual reduction and 

then increase, in the case of P = 1 kN. In the case of L 6B dome and P = 1 kN, the noticeable 

reduction of unstable region area at level 𝑆 = 110 kN was approximately 92%, and only 40% 

for the P = 5 kN. 

Fig. 6.37 presents instability regions corresponding to resonant frequencies dependent on 

the initial prestress level (𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5) and one independent frequency (𝜂6). Only the 

first three frequencies (𝜂1, 𝜂2, and 𝜂3) are characterized by the instability regions wide enough 

to increase the risk of occurring excitation of unstable motion. The complete narrowing of limit 

of instability regions is noticed for the frequencies 𝜂4, 𝜂5, and 𝜂6. 

 

 

 



6. Levy domes 

 127 

 

Table 6.13. Limits of main instability regions of the L 6A and L 6B domes for load position 𝐏(2)    

 
𝑆𝑚𝑖𝑛(A) = 5 kN 

𝑆𝑚𝑖𝑛(B) = 10 kN 
𝑆 = 20 kN 𝑆 = 40 kN 

1 

kN 

   

 
𝑆𝑚𝑖𝑛(A) = 42 kN 

𝑆𝑚𝑖𝑛(B) = 48 kN 
𝑆 = 80 kN 𝑆 = 110 kN 

5 

kN 

   

a) b) 

  
Fig. 6.36. Influence of the initial prestress level 𝑆 on the range of unstable regions of: a) L 6B for 

P = 1 kN, b) L 6B for P = 5 kN 
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Fig. 6.37. Limits of six instability regions of the L 6B dome (𝑆𝑚𝑖𝑛 = 48 kN), for the 

load P = 5 kN 

Conclusion of the comparison: The dynamic response of the L 6A dome remains the same in 

comparison to Example 1, while the L 6B dome is characterized by a wider unstable region that 

occurs even at the high level of the initial prestress. Comparing all resonant frequencies 

dependent on the initial prestress level, the one corresponding to the mechanism is characterized 

by the widest unstable region.   

Example 3 

Subject of the comparison: L 6A (Fig. 6.38a) and L 6B (Fig. 6.38b) domes, load position 𝐏(3)  

– unstable regions 

Aim of the comparison: (1) Does the initial prestress level affect unstable regions in the case of 

load position 𝐏(3)? (2) Does the design solution (close or open upper section) affect unstable 

regions in the case of load position 𝐏(3)?    

a)                              L 6A b)                                L 6B 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 1 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 5 kN 

P = 1 kN →  𝑆𝑚𝑖𝑛 = 3 kN 

P = 5 kN →  𝑆𝑚𝑖𝑛 = 12 kN 

  

Fig. 6.38. External load application in the case of position 𝐏(1) for: a) L 6A, b) L 6B  
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The next considered example concerns the dynamic behaviour of the considered domes in 

the case of the load position 𝐏(3) (Table 6.14). The L 6B dome is characterized by the lowest 

resonant frequency level in comparison to Example 1 and Example 2, due to the fact that the 

external load is positioned farthest away from the infinitesimal mechanism. In the case of low 

load value, both domes are characterized by the absence of instability regions, however, the 

increased external load resulted in the occurrence of instability region of L 6B dome.  

The impact of the initial prestress level on the distribution of the range and distribution of 

instability regions (Fig. 6.39) is similar to Example 1 and Example 2.  

Table 6.14. Limits of main instability regions of the L 6A and L 6B domes for load position 𝐏(3)    

 
𝑆𝑚𝑖𝑛(A) = 1 kN 

𝑆𝑚𝑖𝑛(B) = 3 kN 
𝑆 = 20 kN 𝑆 = 40 kN 

1 

kN 

   

 
𝑆𝑚𝑖𝑛(A) = 5 kN 

𝑆𝑚𝑖𝑛(B) = 12 kN 
𝑆 = 30 kN 𝑆 = 50 kN 

5 

kN 
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a) b) 

  

Fig. 6.39. Influence of the initial prestress level 𝑆 on the range of unstable region of: a) L 6B for 

P = 1 kN, b) L 6B for P = 5 kN 

Conclusion of the comparison: In the comparison to Example 2, the L 6B characterized by the 

smaller unstable regions, whilst the behaviour of L 6A dome remains the same. The occurrence 

of unstable regions noticed only at the low level of the initial prestress. 

Example 4 

Subject of the comparison: L 6A, L 6B – unstable regions 

Aim of the comparison: (1) How do the load value and position affect the distribution of 

unstable regions? (2) For which dome the probability of the unstable regions is least likely to 

occur? (3) What is the most optimal recommended initial prestress level? 

The summarized results present the distribution of instability regions that correspond to 

the first resonant frequency, in the case of different load situations (Fig. 6.40). The external 

load is equal to 1 kN (1) and 5 kN (5), whereas different load positions are defined as (1,2, or 

3). The caption “LA 1(3)” stands for type A dome loaded with force 1 kN applied in position 

3. The results are presented for the 𝑆𝑚𝑖𝑛 level of prestress. In the case of type A dome (LA), 

neither load value nor position influences the level of resonant frequency. The limits of 

instability regions completely overlap. In turn, for the dome type B (LB), the resonant frequency 

depends on the external load. The load position 𝐏(1) results in the highest resonant frequency, 

thus the widest instability region occurs in the situation 𝐏(2) and P = 5 kN. The behaviour of L 

6B dome is similar to the MG 6B dome (Geiger dome, modified, type B). The distribution of 

areas of instability regions is the same.    
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a) b) 

  

Fig. 6.40. Influence of the initial prestress level 𝑆 on the range of unstable region of: a) L 6A, b) L 

6B  

The influence of the initial prestress level on the areas of the unstable regions is presented 

in Fig. 6.41. In the case of the LA dome, the impact of the initial prestress is absent, the 

behaviour is similar to the MG 6A dome (Geiger dome, modified, type A). In turn, the impact 

is nonlinear for the LB dome. However, the graph shape and the relation are different, than in 

the case of the MG 6B dome. The initial prestress level has an impact on the area of unstable 

regions even at the high levels of the prestress, unlike the Geiger dome. 

a) b) 

  

Fig. 6.41. Influence of the initial prestress level 𝑆 on the area of unstable region 𝐴𝜂: a) L 6A, b) L 

6B  

Conclusion of the comparison: The load value and position have no impact on the unstable 

regions in the case of L 6A dome. In turn, for the L 6B dome the situation is opposite, however, 

only the load value effects the distribution of the unstable regions. Similarly to the Geiger 

domes, the probability of the occurrence of the unstable regions is getting smaller with an 

increasing of the initial prestress level, nonetheless, the level of prestress is significantly higher 
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than in the case of Geiger domes. The most optimal recommended initial prestress level is above 

𝑆 = 100 kN.  

6.5. Summary 

The behaviour of the Levy dome is significantly different in comparison to the Geiger 

dome. The structures’ response to the external load highly depends on the presence of the 

infinitesimal mechanism. The type A Levy dome (without the infinitesimal mechanism) 

behaves like a traditional rod-like structure, and the initial prestress level has little impact on 

the static parameters of the dome. In turn, type B Levy dome (with infinitesimal mechanism) 

behaves similarly to the Geiger dome, nonetheless, the impact of the initial prestress level is 

significantly smaller. Additionally, the type A dome characterized by the lower minimum 

prestress level.  

The dynamic analysis of Levy domes shows, that the natural frequencies level of the type 

A domes is not related to the number of load-bearing girders of the structure, and only a little 

linear influence of the initial prestress level can be observed. On the other hand, in the case of 

type B domes, the natural frequencies level highly depends on a number of load-bearing girders 

and high nonlinear impact of the initial prestress level occurs. Additionally, the type B domes 

are characterized by the additional natural frequencies that depend on the initial prestress level. 

The situation is similar for free frequencies. In the case of type A Levy dome, free frequencies 

do not depend on neither the initial prestress level, nor load value or position. In turn, for the 

type B levy dome the situation is opposite, however at the maximum prestress level 𝑆 = 120 kN 

the values of the natural and free frequencies are the same (the discrepancy less than 1%). 

In the case of dynamic stability analysis, the occurrence of unstable regions is detected 

only for type B dome. The widest unstable region occurs in the case of load position 𝐏(𝟐) and 

P = 5 kN, where the increase in the initial prestress level didn’t result in the narrowing of limits. 

The limits of unstable regions of type A dome fully coincide, and the dome is insensitive to the 

change to the change in the resonant frequencies. 

The results of the analysis show that the ability to control the dome behaviour by adjusting 

the initial prestress level is possible only for type B dome Levy dome. However, this dome is 

characterized by higher minimum prestress level and is more sensitive to the external load. In 

turn, for the type A dome initial prestress level has little impact, but the dome is less sensitive 

to the external load condition.   

 

   



7. Conclusions 

 133 

 

7. Conclusions 

The dissertation thesis concerns the dynamic stability of tensegrity domes. The research 

was conducted in regard to the influence of the initial prestress level on the static parameters 

(displacements, stiffness, maximum effort) and dynamic parameters (natural and free 

frequencies of vibrations, unstable regions). The analysis of the two most known tensegrity 

domes, i.e., Geiger dome and Levy dome, was performed. The analyzed domes were presented 

with different number of load-bearing girders, structural modifications, and subjected to the 

different external load situations in order to compare structures response. The structural 

modification of the Geiger dome relies on changing the upper section of the dome, replacing 

the original open upper section with the single strut (closed upper section), and introducing 

additional circumferential cables. In terms of the Levy dome, only the modification of the upper 

section was introduced. The aim of the work was to answer the questions posed in Chapter 1 

(research purpose and scope).  

i. How does the initial prestress impact static parameters of the domes with and without 

infinitesimal mechanisms? 

It is known from the literature, that initial prestress level impacts static parameters of the 

structure with infinitesimal mechanisms. This is in the case of Geiger domes under 

asymmetrical load. The Geiger domes are characterized by a dozen (several dozens) of 

infinitesimal mechanisms, the number of which depends on the number of load-bearing girders 

and design configuration. The mechanisms are related to the geometric variability of the entire 

dome. The influence of the initial prestress level on static parameters of Geiger domes is always 

significant. The impact on the displacements is nonlinear and greater at the low values of the 

initial prestress. The stiffness of the dome increases linearly, even up to 13 times. The exception 

is a symmetrical load applied on the dome. In this case, the influence of the initial prestress 

level is absent, because the resulting displacements are inconsistent with the infinitesimal 

mechanism. 

In the case of Levy domes, only the dome type with an open upper section (type B Levy 

dome) was characterized by one infinitesimal mechanism. However, the mechanism is related 

only to the upper section of the dome. For the type B Levy dome (with the infinitesimal 

mechanism), the influence of the initial prestress is similar but significantly smaller. Depending 

on the load type, a small nonlinear or linear impact on the displacements was observed. The 
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stiffness of the dome increases linearly only up to 3 times. In turn, for the type A Levy dome 

(without the infinitesimal mechanism), the low linear impact of the initial prestress level on the 

displacements and stiffness can be noticed, which in comparison to the Geiger domes is almost 

absent.   

ii. What is the relation between the initial prestress level and vibration frequencies that 

correspond to the infinitesimal mechanisms? 

The dynamic analysis of Geiger domes showed the nonlinear relation between natural 

frequencies corresponding to the mechanism and initial prestress level. In the case of type A 

domes (regular and modified), the number of load-bearing girders did not affect the level of 

natural frequencies, and frequencies were less sensitive to the change in the initial prestress 

level. In turn, for the type B Geiger domes, the situation is opposite. In the case of free 

frequencies of Geiger domes, the discrepancy between natural and free frequencies (for 

different load positions) was noticed only for low levels of initial prestress. The increase of the 

prestress results in the convergence of the values of frequencies.  

In the case of the type B Levy dome, there is only one natural frequency corresponding to 

the infinitesimal mechanism, and the impact of the initial prestress level is nonlinear. For the 

free frequencies, the situation is similar to the Geiger domes. The type A Levy dome is not 

characterized by the mechanism, and therefore there are no frequencies correspond to the 

mechanism.   

iii. What is the relation between the initial prestress level and vibration frequencies that 

do not correspond to the infinitesimal mechanisms? 

During the dynamic analysis, it was noticed that some natural frequencies that do not 

correspond to the infinitesimal mechanisms are influenced by the initial prestress level. This is 

in the case of type A Geiger domes (regular and modified) and type B Levy domes. The number 

of these additional frequencies depends on the number of load-bearing girders of the dome. In 

the case of Geiger domes, the impact of the initial prestress on natural frequencies not 

corresponding to the infinitesimal mechanism was linear, thus, for the Levy dome – nonlinear. 

The influence of the initial prestress level increases with the number of load-bearing girders.       
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iv. How does the initial prestress level influence the distribution and range of unstable 

regions? 

The dynamic stability analysis shows that the widest unstable regions occur at the 

minimum initial prestress level. Additionally, the widest regions are related to the last resonant 

frequency correspond to the mechanism. Nonetheless, an increasing of the prestress results in 

the complete or partial narrowing of the unstable regions. The resonant frequencies (unstable 

regions) of Geiger’s dome are more sensitive to the change in the initial prestress level, thus 

increasing prestress to the maximum level resulted in a complete narrowing of areas of regions 

for each considered example. In turn, for the type B Levy dome, due to a little sensitivity to the 

change in the initial prestress level, some cases are characterized by wide unstable regions even 

at the maximum prestress. The type A Levy dome is not characterized by the presence of 

unstable regions and the initial prestress level has no impact on the resonant frequencies.    

v. How does the position and value of the external load influence the static and dynamic 

response of the dome? 

For the purpose of the analysis, several types of external load conditions were selected. 

The vertical force was applied in different positions on the load-bearing girder and two variants 

of the force values were presented. For the considered domes, different positions/values of the 

external load resulted in the change of the minimum prestress level. The exception was the 

Geiger patent dome (regular type B Geiger dome with 6 load-bearing girders). In the case of 

Geiger domes, significant was symmetrically distributed external load. This load type is 

inconsistent with the infinitesimal mechanisms of the dome, thus, the influence of the initial 

prestress level on static parameters is absent. For the type B Levy dome, the load positioned in 

the upper section requires the highest minimum prestress level. This is due to the location of 

one infinitesimal mechanism in the upper section of the dome. In turn, for the type A Levy 

dome, the load positioned in the middle section of the dome causes the higher minimum 

prestress level. For each considered dome, the greater impact on static and dynamic parameters 

had rather the load value than position.       

vi.  How does the structural modification influence the static and dynamic response of the 

dome?  

In the case of the Geiger domes, the closed upper section resulted in the decreasing number 

of the infinitesimal mechanisms, thus, decreasing sensitivity to the change in the initial 
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prestress. In turn, modification of cable layout (additional circumferential cables) didn’t result 

in the improvement of the static response of the structure. Additionally, in the case of type B 

Geiger domes, extra cables introduced a negative impact on the dynamic stability of the dome. 

The open upper section in the Levy domes (type B dome) results in the appearance of the 

infinitesimal mechanism, i.e., the ability to control static and dynamic parameters of the 

structure. It is worth mentioning, that type B Levy domes are characterized by significantly 

higher minimum prestress level and wide unstable regions. In terms of the dynamic response, 

type A Levy domes are more stable.     

i. What are the design guidelines for the application of tensegrity domes? 

The application of tensegrity domes in the real structure is a very demanding process.  The 

existing tensegrity structures around the world are the ones without the infinitesimal 

mechanisms. In turn, the domes analyzed in this work characterized by the infinitesimal 

mechanisms, can be used for example for temporary structures, e.g., arenas, roofs, and festival 

facilities. In terms of applying these types of structures to real objects, additional analyses must 

be conducted (including experimental studies). The analyses must include the physical 

nonlinearity of cables and local stability analysis (the local buckling of single elements).   

Conducted analysis confirmed the following hypothesis: 

1. Control of static and dynamic parameters is only possible for tensegrity domes that 

exhibit an infinitesimal mechanism. 

2. Structural modifications can both improve and impair domes’ response to the external 

load.  

3. The initial prestress affects the distribution of dynamic unstable regions in tensegrity 

domes subjected to periodic loads.       
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The consideration in the thesis is summarized in the Table 7.1: 

      Table 7.1. Summary of thesis considerations 

 
Geiger domes Levy domes 

Type A Type B Type A Type B 

Tensegrity 

features 

• Self-stress 

states 

• Infinitesimal 

mechanisms 

• Self-stress 

states 

• Infinitesimal 

mechanisms 

• Self-stress 

state 

• Self-stress 

state 

• Infinitesimal 

mechanism 

Influence of the initial prestress level on following parameters: 

Static parameters 

Displacements significant significant absent insignificant 

Maximum 

effort 
significant significant significant significant 

Stiffness significant significant insignificant insignificant 

Dynamic parameters 

Natural 

frequencies  

and  

Free 

frequencies 

those, that 

correspond to 

the mechanism 

and additional 

dependent on the 

number of the 

load-bearing 

girders 

those, that 

correspond to 

the mechanism 

insignificant 

those, that 

correspond to 

the mechanism 

and additional 

dependent on the 

number of the 

load-bearing 

girders 

Unstable 

regions 
significant significant absent insignificant 
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Appendix A – Spectral analysis of Geiger dome (RG 6B) 

(Mathematica environment) 
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Appendix C – Dynamic stability analysis of Geiger dome (RG 

6B) (Mathematica environment) 
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